Advertisement

Journal of Thermal Spray Technology

, Volume 26, Issue 3, pp 398–408 | Cite as

Super-Hydrophobic Surface Prepared by Lanthanide Oxide Ceramic Deposition Through PS-PVD Process

  • Jie Li
  • Cheng-Xin LiEmail author
  • Qing-Yu Chen
  • Jiu-Tao Gao
  • Jun Wang
  • Guan-Jun Yang
  • Chang-Jiu Li
Peer Reviewed

Abstract

Super-hydrophobic surface has received widespread attention in recent years. Both the surface morphology and chemical composition have significant impact on hydrophobic performance. A novel super-hydrophobic surface based on plasma spray-vapor deposition was introduced in the present paper. Samaria-doped ceria, which has been proved as an intrinsic hydrophobic material, was used as feedstock material. Additionally, in order to investigate the influence of surface free energy on the hydrophobicity, chemical modification by low surface free energy materials including stearic acid and 1,1,2,2-tetrahydroperfluorodecyltrimethoxysilane (FAS) was used on coating surface. Scanning electron microscopy and Fourier transform infrared spectroscopy were employed to characterize the coating surface. The results show that the obtained surface has a hierarchical structure composed by island-like structures agglomerated with angular-like sub-micrometer-sized particles. Moreover, with the surface free energy decreases, the hydrophobic property of the surface improves gradually. The water contact angle of the as-sprayed coating surface increases from 110° to 148° after modification by stearic acid and up to 154° by FAS. Furthermore, the resultant surface with super-hydrophobicity exhibits an excellent stability.

Keywords

coating PS-PVD samaria-doped ceria super-hydrophobicity 

Notes

Acknowledgments

This work was supported by National Basic Research Program of China (2012CB625100) and National Natural Science Foundation of China (51342003).

References

  1. 1.
    A. Nakajima, K. Hashimoto, and T. Watanabe, Recent Studies on Super-Hydrophobic Films, Monatsh. Chem., 2001, 132(1), p 31-41CrossRefGoogle Scholar
  2. 2.
    X. Zhang, F. Shi, J. Niu, Y. Jiang, and Z. Wang, Superhydrophobic Surfaces: From Structural Control to Functional Application, J. Mater. Chem., 2008, 18(6), p 621-633CrossRefGoogle Scholar
  3. 3.
    B. Bhushan and Y.C. Jung, Natural and Biomimetic Artificial Surfaces for Superhydrophobicity, Self-Cleaning, Low Adhesion, and Drag Reduction, Mater. Sci., 2011, 56(1), p 1-108Google Scholar
  4. 4.
    H. Ogihara, J. Xie, and T. Saji, Factors Determining Wettability of Superhydrophobic Paper Prepared by Spraying Nanoparticle Suspensions, Colloid Surf. A, 2013, 434(19), p 35-41CrossRefGoogle Scholar
  5. 5.
    B. Bhushan, Y.C. Jung, and K. Koch, Micro-, Nano- and Hierarchical Structures for Superhydrophobicity, Self-Cleaning and Low Adhesion, Philos. Trans. R. Soc. A, 1894, 2009(367), p 1631-1672Google Scholar
  6. 6.
    M. Ruan, W. Li, B. Wang, B. Deng, F. Ma, and Z. Yu, Preparation and Anti-Icing Behavior of Superhydrophobic Surfaces on Aluminum Alloy Substrates, Langmuir, 2013, 29(27), p 8482-8491CrossRefGoogle Scholar
  7. 7.
    S. Lyu, D.C. Nguyen, D. Kim, W. Hwang, and B. Yoon, Experimental Drag Reduction Study of Super-Hydrophobic Surface with Dual-Scale Structures, Appl. Surf. Sci., 2013, 286(4), p 206-211CrossRefGoogle Scholar
  8. 8.
    J.M. Lim, G.R. Yi, J.H. Moon, C.J. Heo, and S.M. Yang, Superhydrophobic Films of Electrospun Fibers with Multiple-Scale Surface Morphology, Langmuir, 2007, 23(15), p 7981-7989CrossRefGoogle Scholar
  9. 9.
    L. Feng, S. Li, Y. Li, H. Li, L. Zhang, Y. Song, B. Liu, L. Jiang, and D. Zhu, Super-Hydrophobic Surfaces: From Natural to Artificial, Adv. Mater., 2002, 14(24), p 1857-1860CrossRefGoogle Scholar
  10. 10.
    H. Yang, P. Pi, Z.Q. Cai, X. Wen, X. Wang, J. Cheng, and Z.R. Yang, Facile Preparation of Super-Hydrophobic and Super-Oleophilic Silica Film on Stainless Steel Mesh via Sol-Gel Process, Appl. Surf. Sci., 2010, 256(13), p 4095-4102CrossRefGoogle Scholar
  11. 11.
    X. Fu and X. He, Fabrication of Super-Hydrophobic Surfaces on Aluminum Alloy Substrates, Appl. Surf. Sci., 2008, 255(5), p 1776-1781CrossRefGoogle Scholar
  12. 12.
    Y. Liu, J. Liu, S. Li, Z. Han, S. Yu, and L. Ren, Fabrication of Biomimetic Super-Hydrophobic Surface on Aluminum Alloy, J. Mater. Sci., 2014, 49(4), p 1624-1629CrossRefGoogle Scholar
  13. 13.
    Z. Li, Y. Zheng, J. Zhao, and L. Cui, Wettability of Atmospheric Plasma Sprayed Fe, Ni, Cr and Their Mixture Coatings, J. Therm. Spray Technol., 2012, 21(2), p 255-262CrossRefGoogle Scholar
  14. 14.
    C. Ding, B. Huang, and H. Lin, Plasma-Sprayed Wear-Resistant Ceramic and Cermet Coating Materials, Thin Solid Films, 1984, 118(4), p 485-493CrossRefGoogle Scholar
  15. 15.
    Q.Y. Chen, C.X. Li, T. Wei, H.B. Sun, S.L. Zhang, X.T. Luo, G.J. Yang, C.J. Li, and M.L. Liu, Controlling Grain Size in Columnar YSZ Coating Formation by Droplet Filtering Assisted PS-PVD Processing, RSC Adv., 2015, 5(124), p 102126-102133CrossRefGoogle Scholar
  16. 16.
    Q.Y. Chen, C.X. Li, J.Z. Zhao, G.J. Yang, and C.J. Li, Microstructure of YSZ Coatings Deposited by PS-PVD Using 45 kW Shrouded Plasma Torch, Mater. Manuf. Process., 2015, 31(9), p 1-9Google Scholar
  17. 17.
    Z. Guo, W. Liu, and B.L. Su, Superhydrophobic Surfaces: From Natural to Biomimetic to Functional, J. Colloid Interface Sci., 2011, 353(2), p 335-355CrossRefGoogle Scholar
  18. 18.
    G. Azimi, R. Dhiman, H.M. Kwon, A.T. Paxson, and K.K. Varanasi, Hydrophobicity of Rare-Earth Oxide Ceramics, Nat. Mater., 2013, 12(4), p 315-320CrossRefGoogle Scholar
  19. 19.
    L. Zhu, N. Zhang, R. Bolot, M.P. Planche, H. Liao, and C. Coddet, Very Low Pressure Plasma Sprayed Yttria-Stabilized Zirconia Coating Using a Low-Energy Plasma Gun, Appl. Phys. A, 2011, 105(4), p 991-996CrossRefGoogle Scholar
  20. 20.
    K.V. Niessen and M. Gindrat, Plasma Spray-PVD: A New Thermal Spray Process to Deposit Out of the Vapor Phase, J. Therm. Spray Technol., 2011, 20(4), p 736-743CrossRefGoogle Scholar
  21. 21.
    A. Hospach, G. Mauer, R. Vaßen, and D. StÖver, Columnar-Structured Thermal Barrier Coatings (TBCs) by Thin Film Low-Pressure Plasma Spraying (LPPS-TF), Therm. Spray Technol., 2011, 20(1), p 116-120CrossRefGoogle Scholar
  22. 22.
    Y. Zhang, J. Wu, X. Yu, and H. Wu, Low-Cost One-Step Fabrication of Superhydrophobic Surface on Al Alloy, Appl. Surf. Sci., 2011, 257(18), p 7928-7931CrossRefGoogle Scholar
  23. 23.
    S.R. Yu, J.A. Liu, W. Diao, and W. Li, Preparation of a Bionic Microtexture on X52 Pipeline Steels and Its Superhydrophobic Behavior, J. Alloy. Compd., 2014, 585(5), p 689-695CrossRefGoogle Scholar
  24. 24.
    Z. Lu, P. Wang, and D. Zhang, Super-Hydrophobic Film Fabricated on Aluminium Surface as a Barrier to Atmospheric Corrosion in a Marine Environment, Corros. Sci., 2015, 91, p 287-296CrossRefGoogle Scholar
  25. 25.
    N. Perkas, G. Amirian, O. Girshevitz, and A. Gedanken, Hydrophobic Coating of GaAs Surfaces with Nanostructured ZnO, Mater. Lett., 2016, 175, p 101-105CrossRefGoogle Scholar
  26. 26.
    M. Aminuzzaman, A. Watanabe, and T. Miyashita, Photochemical Surface Modification and Characterization of Double-Decker-Shaped Polysilsesquioxane Hybrid Thin Films, J. Mater. Chem., 2008, 18(42), p 5092-5097CrossRefGoogle Scholar
  27. 27.
    H. Hou and Y. Chen, Preparation of Super-Hydrophobic Silica Films with Visible Light Transmission Using Phase Separation, J. Sol-Gel. Sci. Technol., 2007, 43(1), p 53-57CrossRefGoogle Scholar
  28. 28.
    S. Alexander, J. Eastoe, A.M. Lord, F. Guittard, and A.R. Barron, Branched Hydrocarbon Low Surface Energy Materials for Superhydrophobic Nanoparticle Derived Surfaces, ACS Appl. Mater. Interfaces, 2016, 8(1), p 660-666CrossRefGoogle Scholar
  29. 29.
    M. Sagisaka, T. Narumi, M. Niwase, S. Narita, A. Ohata, C. James, A. Yoshizawa, E. de Taffin Givenchy, F. Guittard, S. Alexander, and J. Eastoe, Hyperbranched Hydrocarbon Surfactants Give Fluorocarbon-Like Low Surface Energies, Langmuir, 2014, 30(21), p 6057-6063CrossRefGoogle Scholar
  30. 30.
    Y. Wei and C.Q. Jia, Intrinsic Wettability of Graphitic Carbon, Carbon, 2015, 87, p 10-17CrossRefGoogle Scholar
  31. 31.
    A. Marmur, Line Tension and the Intrinsic Contact Angle in Solid-Liquid-Fluid Systems, J. Colloid Interface Sci., 1997, 186(2), p 462-466CrossRefGoogle Scholar
  32. 32.
    X. Chen, J. Yuan, J. Huang, K. Ren, Y. Liu, S. Lu, and H. Li, Large-Scale Fabrication of Superhydrophobic Polyurethane/Nano-Al2O3 Coatings by Suspension Flame Spraying for Anti-Corrosion Applications, Appl. Surf. Sci., 2014, 311(9), p 864-869CrossRefGoogle Scholar
  33. 33.
    G. Verma, S.K. Dhoke, and A.S. Khanna, Polyester Based-Siloxane Modified Waterborne Anticorrosive Hydrophobic Coating on Copper, Surf. Coat. Technol., 2012, 212(6), p 101-108CrossRefGoogle Scholar
  34. 34.
    H. Tamura, K. Mita, A. Tanaka, and M. Ito, Mechanism of Hydroxylation of Metal Oxide Surfaces, J. Colloid Interface Sci., 2001, 243(1), p 202-207CrossRefGoogle Scholar
  35. 35.
    M.M. Gentleman and J.A. Ruud, Role of Hydroxyls in Oxide Wettability, Langmuir, 2010, 26(3), p 1408-1411CrossRefGoogle Scholar
  36. 36.
    J. Li, Z. Jing, Y. Yang, F. Zha, L. Yan, and Z. Lei, Reversible Low Adhesive to High Adhesive Superhydrophobicity Transition on ZnO Nanoparticle Surfaces, Appl. Surf. Sci., 2014, 289, p 1-5CrossRefGoogle Scholar
  37. 37.
    L.B. Boinovich, A.M. Emelyanenko, A.S. Pashinin, C.H. Lee, J. Drelich, and Y.K. Yap, Origins of Thermodynamically Stable Superhydrophobicity of Boron Nitride Nanotubes Coatings, Langmuir, 2012, 28(2), p 1206-1216CrossRefGoogle Scholar
  38. 38.
    W. Xu, J. Song, J. Sun, Y. Lu, and Z. Yu, Rapid Fabrication of Large-Area, Corrosion-Resistant Superhydrophobic Mg Alloy Surfaces, ACS Appl. Mater. Interfaces, 2011, 3(11), p 4404-4414CrossRefGoogle Scholar
  39. 39.
    T. Onda, S. Shibuichi, N. Satoh, and K. Tsujii, Super-Water-Repellent Fractal Surfaces, Langmuir, 1996, 12(9), p 2125-2127CrossRefGoogle Scholar
  40. 40.
    S. Shibuichi, T. Onda, N. Satoh, and K. Tsujii, Super Water-Repellent Surfaces Resulting from Fractal Structure, J. Phys. Chem., 1996, 100(50), p 19512-19517CrossRefGoogle Scholar
  41. 41.
    G. Polizos, E. Tuncer, X. Qiu, T. Aytu, M.K. Kidder, J.M. Messman, and I. Sauers, Nonfunctionalized Polydimethyl Siloxane Superhydrophobic Surfaces Based on Hydrophobic-Hydrophilic Interactions, Langmuir, 2011, 27(6), p 2953-2957CrossRefGoogle Scholar
  42. 42.
    A.B.D. Cassie and S. Baxter, Wettability of Porous Surfaces, Trans. Faraday Soc., 1944, 40, p 546-551CrossRefGoogle Scholar

Copyright information

© ASM International 2017

Authors and Affiliations

  • Jie Li
    • 1
  • Cheng-Xin Li
    • 1
    Email author
  • Qing-Yu Chen
    • 1
  • Jiu-Tao Gao
    • 1
  • Jun Wang
    • 1
  • Guan-Jun Yang
    • 1
  • Chang-Jiu Li
    • 1
  1. 1.State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and EngineeringXi’an Jiaotong UniversityXi’anPeople’s Republic of China

Personalised recommendations