Skip to main content
Log in

Suspension Plasma Sprayed Sr2Fe1.4Mo0.6O6−δ Electrodes for Solid Oxide Fuel Cells

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In this study, suspension plasma spraying (SPS) was applied to deposit double perovskite Sr2Fe1.4Mo0.6O6−δ (SFM) which can be used as both cathode and anode for solid oxide fuel cells. The effects of SFM concentration on the electrode phase composition, microstructure, and catalytic performance were investigated. The electrodes showed a dense structure when it was deposited at a concentration of 0.05 mol/L. The cathode performance was limited by the limited three-phase boundaries and poor gas diffusion. At 750 °C, cathode polarization (R pc) was 0.19 Ω cm2. When the SFM concentration increased to 0.075 mol/L, the deposits revealed a porous microstructure with well-bonded fine particles. As a result, the Rpc decreased significantly to 0.078 Ω cm2 at 750 °C. However, when the SFM concentration was further increased to 0.1 mol/L, the R pc increased owing to the limited interface bonding between the non-molten particles. As a result, it was found that the SFM suspension concentration should be optimized to achieve a highly active SFM by SPS process. Moreover, when the optimized deposit was employed as an anode and tested in a hydrogen atmosphere, it showed anode polarization resistance (Rpa) of 1.5 Ω cm2 at 750 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Q. Liu, X. Dong, G. Xiao, F. Zhao, and F. Chen, A Novel Electrode Material for Symmetrical SOFCs, Adv. Mater., 2010, 22, p 5478-5482

    Article  Google Scholar 

  2. M. Hou, W. Sun, P. Li, J. Feng, G. Yang, J. Qiao, Z. Wang, D. Rooney, J. Feng, and K. Sun, Investigation into the Effect of Molybdenum-Site Substitution on the Performance of Sr2Fe1.5Mo0.5O6−δ for Intermediate Temperature Solid Oxide Fuel Cells, J. Power Sources, 2014, 272, p 759-765

    Article  Google Scholar 

  3. L. Zhang, Q. Zhou, Q. He, and T. He, Double-Perovskites A2FeMoO6−δ (A = Ca, Sr, Ba) as Anodes for Solid Oxide Fuel Cells, J. Power Sources, 2010, 195(19), p 6356-6366

    Article  Google Scholar 

  4. Q. Liu, D.E. Bugaris, G. Xiao, M. Chmara, S. Ma, H.-C. zur Loye, M.D. Amiridis, and F. Chen, Sr2Fe1.5Mo0.5O6−δ as a Regenerative Anode for Solid Oxide Fuel cells, J. Power Sources, 2011, 196(22), p 9148-9153

    Article  Google Scholar 

  5. H. Li, Y. Zhao, Y. Wang, and Y. Li, Sr2Fe2−xMoxO6−δ Perovskite as an Anode in a Solid Oxide Fuel Cell: Effect of the Substitution Ratio, Catal. Today, 2016, 259(Part 2), p 417-422

    Article  Google Scholar 

  6. Z. Lei, Q. Zhu, and L. Zhao, Low Temperature Processing of Interlayer-Free La0.6Sr0.4Co0.2Fe0.8O3−δ Cathodes for Intermediate Temperature Solid Oxide Fuel Cells, J. Power Sources, 2006, 161(2), p 1169-1175

    Article  Google Scholar 

  7. Y. Zhang, J. Liu, X. Huang, Z. Lu, and W. Su, Low Temperature Solid Oxide Fuel Cell with Ba0.5Sr0.5Co0.8Fe0.2O3 Cathode Prepared by Screen Printing, Solid State Ionics, 2008, 179(7-8), p 250-255

    Article  Google Scholar 

  8. R. Hui, Z. Wang, O. Kesler, L. Rose, J. Jankovic, S. Yick, R. Maric, and D. Ghosh, Thermal Plasma Spraying for SOFCs: Applications, Potential Advantages, and Challenges, J. Power Sources, 2007, 170(2), p 308-323

    Article  Google Scholar 

  9. H. Tsukuda, A. Notomi, and N. Histatome, Application of Plasma Spraying to Tubular-type Solid Oxide Fuel Cells Production, J. Therm. Spray Technol., 2000, 9(3), p 364-368

    Article  Google Scholar 

  10. D. Soysal, J. Arnold, P. Szabo, R. Henne, and S.A. Ansar, Thermal Plasma Spraying Applied on Solid Oxide Fuel Cells, J. Therm. Spray Technol., 2013, 22(5), p 588-598

    Article  Google Scholar 

  11. S.-L. Zhang, C.-X. Li, C.-J. Li, G.-J. Yang, and Z.-H. Han, Scandia-Stabilized Zirconia Electrolyte with Improved Interlamellar Bonding by High-Velocity Plasma Spraying for High Performance Solid Oxide Fuel Cells, J. Power Sources, 2013, 232, p 123-131

    Article  Google Scholar 

  12. S.-L. Zhang, C.-X. Li, and C.-J. Li, Plasma-Sprayed Y2O3-Stabilized ZrO2 Electrolyte with Improved Interlamellar Bonding for Direct Application to Solid Oxide Fuel Cells, J. Fuel Cell Sci. Technol., 2014, 11, p 031001-031006

    Article  Google Scholar 

  13. C.-X. Li, C.-J. Li, and L.-J. Guo, Performance of a Ni/Al2O3 Cermet-Supported Tubular Solid Oxide Fuel Cell Operating with Biomass-Based Syngas Through Supercritical Water, Int. J. Hydrogen Energy, 2010, 35(7), p 2904-2908

    Article  Google Scholar 

  14. C.-X. Li, L.-L. Yun, Y. Zhang, C.-J. Li, and L.-J. Guo, Microstructure, Performance and Stability of Ni/Al2O3 Cermet-Supported SOFC Operating with Coal-based Syngas Produced Using Supercritical Water, Int. J. Hydrogen Energy, 2012, 37(17), p 13001-13006

    Article  Google Scholar 

  15. C.-X. Li, C.-J. Li, and L.-J. Guo, Effect of Composition of NiO/YSZ Anode on the Polarization Characteristics of SOFC Fabricated by Atmospheric Plasma Spraying, Int. J. Hydrogen Energy, 2010, 35(7), p 2964-2969

    Article  Google Scholar 

  16. A. Ohmori and C.-J. Li, Quantitative Characterization of the Structure of Plasma-Sprayed Al2O3 Coating by Using Copper Electroplating, Thin Solid Films, 1991, 201(2), p 241-252

    Article  Google Scholar 

  17. A. Ohmori, C.-J. Li, and Y. Arata, Influence of Plasma Spray Conditions on the Structure of Al2O3 Coatings, Trans. Jpn. Weld Res. Inst., 1990, 19(1), p 259-270

    Google Scholar 

  18. S.-L. Zhang, C.-X. Li, and C.-J. Li, Chemical Compatibility and Properties of Suspension Plasma-Sprayed SrTiO3-Based Anodes for Intermediate Temperature Solid Oxide Fuel Cells, J. Power Sources, 2014, 264, p 195-205

    Article  Google Scholar 

  19. J. Fazilleau, C. Delbos, V. Rat, J.F. Coudert, P. Fauchais, and B. Pateyron, Phenomena Involved in Suspension Plasma Spraying, Part 1: Suspension Injection and Behavior, Plasma Chem. Plasma Process., 2006, 26, p 371-391

    Article  Google Scholar 

  20. P. Fauchais, R. Etchart-Salas, V. Rat, J.F. Coudert, N. Caron, and K. Wittmann-Ténèze, Parameters Controlling Liquid Plasma Spraying: Solutions, Sols, or Suspensions, J. Therm. Spray Techol., 2008, 17(1), p 31-59

    Article  Google Scholar 

  21. P. Fauchais, M. Vardelle, A. Vardelle, and S. Goutier, What Do We Know, What are the Current Limitations of Suspension Plasma Spraying, J. Therm. Spray Technol., 2015, 24(7), p 1120-1129

    Article  Google Scholar 

  22. N. Ortiz-Vitoriano, A. Hauch, I. Ruiz de Larramendi, C. Bernuy-López, R. Knibbe, and T. Rojo, Electrochemical Characterization of La0.6Ca0.4Fe0.8Ni0.2O3−δ Perovskite Cathode for IT-SOFC, J. Power Sources, 2013, 239, p 196-200

    Article  Google Scholar 

  23. N. Ortiz-Vitoriano, C. Bernuy-López, A. Hauch, I. Ruiz de Larramendi, and T. Rojo, Electrochemical Characterization of La0.6Ca0.4Fe0.8Ni0.2O3 Cathode on Ce0.8Gd0.2O1.9 Electrolyte for IT-SOFC, Int. J. Hydrogen Energy, 2014, 39(12), p 6675-6679

    Article  Google Scholar 

  24. B. He, L. Zhao, S. Song, T. Liu, F. Chen, and C. Xia, Sr2Fe1.5Mo0.5O6−δ –Sm0.2Ce0.8O1.9 Composite Anodes for Intermediate-Temperature Solid Oxide Fuel Cells, J. Electrochem. Soc., 2012, 159(5), p B619-B626

    Article  Google Scholar 

Download references

Acknowledgments

This study was partially supported by the National Basic Research Program (Grant No. 2012CB625100) and China Postdoctoral Science Foundation Grant (Grant No. 2015M580840).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Xin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, SL., Zhang, AP., Li, CX. et al. Suspension Plasma Sprayed Sr2Fe1.4Mo0.6O6−δ Electrodes for Solid Oxide Fuel Cells. J Therm Spray Tech 26, 432–440 (2017). https://doi.org/10.1007/s11666-016-0478-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-016-0478-5

Keywords

Navigation