Journal of Thermal Spray Technology

, Volume 25, Issue 8, pp 1666–1683 | Cite as

Characterizing Suspension Plasma Spray Coating Formation Dynamics through Curvature Measurements

  • Ramachandran Chidambaram Seshadri
  • Gopal Dwivedi
  • Vaishak Viswanathan
  • Sanjay Sampath
Peer Reviewed

Abstract

Suspension plasma spraying (SPS) enables the production of variety of microstructures with unique mechanical and thermal properties. In SPS, a liquid carrier (ethanol/water) is used to transport the sub-micrometric feedstock into the plasma jet. Considering complex deposition dynamics of SPS technique, there is a need to better understand the relationships among spray conditions, ensuing particle behavior, deposition stress evolution and resultant properties. In this study, submicron yttria-stabilized zirconia particles suspended in ethanol were sprayed using a cascaded arc plasma torch. The stresses generated during the deposition of the layers (termed evolving stress) were monitored via the change in curvature of the substrate measured using an in situ measurement apparatus. Depending on the deposition conditions, coating microstructures ranged from feathery porous to dense/cracked deposits. The evolving stresses and modulus were correlated with the observed microstructures and visualized via process maps. Post-deposition bi-layer curvature measurement via low temperature thermal cycling was carried out to quantify the thermo-elastic response of different coatings. Lastly, preliminary data on furnace cycle durability of different coating microstructures were evaluated. This integrated study involving in situ diagnostics and ex situ characterization along with process maps provides a framework to describe coating formation mechanisms, process parametrics and microstructure description.

Keywords

curvature measurements elastic properties stress evolution suspension plasma spray thermal cycling 

Notes

Acknowledgments

This work was supported in part by the National Science Foundation—Partnership for Innovation (NSF-PFI Grant No. IIP-1114205) and The Consortium for Thermal Spray Technology of Stony Brook University. The authors appreciate the Oerlikon Metco Team: Jose Colmenares-Angulo, Riston Rocchio-Heller, Jing Liu, Jonathan Gutleber, Ronald Molz, David Hawley, Montia Nestler, Michael Tobin and Richard Schmid for the help and support in setting up a suspension spray system at Stony Brook.

References

  1. 1.
    P. Fauchais and G. Montavon, Latest Developments in Suspension and Liquid Precursor Thermal Spraying, J. Therm. Spray Technol., 2010, 19(1), p 226-239CrossRefGoogle Scholar
  2. 2.
    L. Pawlowski, Finely Grained Nanometric and Submicrometric Coatings by Thermal Spraying: A Review, Surf. Coat. Technol., 2008, 202(18), p 4318-4328CrossRefGoogle Scholar
  3. 3.
    M. Vardelle, A. Vardelle, P. Fauchais, K.I. Li, B. Dussoubs, and N.J. Themelis, Controlling Particle Injection in Plasma Spraying, J. Therm. Spray Technol., 2001, 10(2), p 267-284CrossRefGoogle Scholar
  4. 4.
    J. Fazilleau, C. Delbos, V. Rat, J.F. Coudert, P. Fauchais, and B. Pateyron, Phenomena Involved in Suspension Plasma Spraying Part 1: Suspension Injection and Behavior, Plasma. Chem. Plasma. Phy., 2006, 26(4), p 371-391CrossRefGoogle Scholar
  5. 5.
    R. Vaßen, Z. Yi, H. Kaßner, and D. Stöver, Suspension Plasma Spraying of TiO2 for the Manufacture of Photovoltaic Cells, Surf. Coat. Technol., 2009, 203(15), p 2146-2149CrossRefGoogle Scholar
  6. 6.
    L. Łatka, L. Pawlowski, D. Chicot, C. Pierlot, and F. Petit, Mechanical Properties of Suspension Plasma Sprayed Hydroxyapatite Coatings Submitted to Simulated Body Fluid, Surf. Coat. Technol., 2010, 205(4), p 954-960CrossRefGoogle Scholar
  7. 7.
    O. Tingaud, P. Bertrand, and G. Bertrand, Microstructure and Tribological Behavior of Suspension Plasma Sprayed Al2O3 and Al2O3–YSZ Composite Coatings, Surf. Coat. Technol., 2010, 205(4), p 1004-1008CrossRefGoogle Scholar
  8. 8.
    N. Curry, Z.L. Tang, N. Markocsan, and P. Nylen, Influence of Bond Coat Surface Roughness on the Structure of Axial Suspension Plasma Spray Thermal Barrier Coatings—Thermal and Lifetime Performance, Surf. Coat. Technol., 2015, 268, p 15-23CrossRefGoogle Scholar
  9. 9.
    R. Hui, Z. Wang, O. Kesler, L. Rose, J. Jankovic, S. Yick, R. Maric, and D. Ghosh, Thermal Plasma Spraying for SOFCs: Applications, Potential Advantages, and Challenges, J. Power Sources, 2007, 170(2), p 308-323CrossRefGoogle Scholar
  10. 10.
    K. VanEvery, M.J.M. Krane, R.W. Trice, H. Wang, W. Porter, M. Besser, D. Sordelet, J. Ilavsky, and J. Almer, Column Formation in Suspension Plasma-Sprayed Coatings and Resultant Thermal Properties, J. Therm. Spray Technol., 2011, 20(4), p 817-828CrossRefGoogle Scholar
  11. 11.
    U. Schulz, B. Saruhan, K. Fritscher, and C. Leyens, Review on Advanced EB-PVD Ceramic Topcoats for TBC Applications, Int. J. App. Ceram. Technol., 2004, 1(4), p 302-315CrossRefGoogle Scholar
  12. 12.
    S. Sampath, U. Schulz, M.O. Jarligo, and S. Kuroda, Processing Science of Advanced Thermal-Barrier Systems, MRS Bull., 2012, 37(10), p 903-910CrossRefGoogle Scholar
  13. 13.
    K. VanEvery, M.J.M. Krane, and R.W. Trice, Parametric Study of Suspension Plasma Spray Processing Parameters on Coating Microstructures Manufactured from Nanoscale Yttria-Stabilized Zirconia, Surf. Coat. Technol., 2012, 206(8–9), p 2464-2473CrossRefGoogle Scholar
  14. 14.
    E.M. Cotler, D.Y. Chen, and R.J. Molz, Pressure-Based Liquid Feed System for Suspension Plasma Spray Coatings, J. Therm. Spray Technol., 2011, 20(4), p 967-973CrossRefGoogle Scholar
  15. 15.
    S. Kuroda and T.W. Clyne, The Quenching Stress in Thermally Sprayed Coatings, Thin Solid Films, 1991, 200(1), p 49-66CrossRefGoogle Scholar
  16. 16.
    J. Matejicek, S. Sampath, D. Gilmore, and R. Neiser, In Situ Measurement of Residual Stresses and Elastic Moduli in Thermal Sprayed Coatings: Part 2: Processing Effects on Properties of Mo Coatings, Acta Mater., 2003, 51(3), p 873-885CrossRefGoogle Scholar
  17. 17.
    J. Matejicek and S. Sampath, In Situ Measurement of Residual Stresses and Elastic Moduli in Thermal Sprayed Coatings: Part 1: Apparatus and Analysis, Acta Mater., 2003, 51(3), p 863-872CrossRefGoogle Scholar
  18. 18.
    S. Sampath, V. Srinivasan, A. Valarezo, A. Vaidya, and T. Streibl, Sensing, Control, and In Situ Measurement of Coating Properties: An Integrated Approach Toward Establishing Process-Property Correlations, J. Therm. Spray Technol., 2009, 18(2), p 243-255CrossRefGoogle Scholar
  19. 19.
    Y. Liu, T. Nakamura, V. Srinivasan, A. Vaidya, A. Gouldstone, and S. Sampath, Non-linear Elastic Properties of Plasma-Sprayed Zirconia Coatings and Associated Relationships with Processing Conditions, Acta Mater., 2007, 55(14), p 4667-4678CrossRefGoogle Scholar
  20. 20.
    Y. Liu, T. Nakamura, G. Dwivedi, A. Valarezo, and S. Sampath, Anelastic Behavior of Plasma-Sprayed Zirconia Coatings, J. Am. Ceram. Soc., 2008, 91(12), p 4036-4043CrossRefGoogle Scholar
  21. 21.
    G. Dwivedi, T. Nakamura, and S. Sampath, Controlled Introduction of Anelasticity in Plasma-Sprayed Ceramics, J. Am. Ceram. Soc., 2011, 94, p 104-111CrossRefGoogle Scholar
  22. 22.
    V. Viswanathan, G. Dwivedi, and S. Sampath, Engineered Multilayer Thermal Barrier Coatings for Enhanced Durability and Functional Performance, J. Am. Ceram. Soc., 2014, 97(9), p 2770-2778CrossRefGoogle Scholar
  23. 23.
    V. Viswanathan, G. Dwivedi, and S. Sampath, Multilayer, Multimaterial Thermal Barrier Coating Systems: Design, Synthesis, and Performance Assessment, J. Am. Ceram. Soc., 2015, 98(6), p 1769-1777CrossRefGoogle Scholar
  24. 24.
    C.S. Ramachandran, V. Balasubramanian, and P.V. Ananthapadmanabhan, Multiobjective Optimization of Atmospheric Plasma Spray Process Parameters to Deposit Yttria-Stabilized Zirconia Coatings Using Response Surface Methodology, J. Therm. Spray Technol., 2011, 20(3), p 590-607CrossRefGoogle Scholar
  25. 25.
    T. Streibl, A. Vaidya, M. Friis, V. Srinivasan, and S. Sampath, A Critical Assessment of Particle Temperature Distributions During Plasma Spraying: Experimental Results for YSZ, Plasma. Chem. Plasma. Phy., 2006, 26(1), p 73-102CrossRefGoogle Scholar
  26. 26.
    V. Rat, C. Delbos, C. Bonhomme, J. Fazilleau, J.F. Coudert, and P. Fauchais, Understanding of Suspension Plasma Spraying, High. Temp. Mater., 2004, 8(1), p 95-117CrossRefGoogle Scholar
  27. 27.
    P. Fauchais, V. Rat, J.F. Coudert, R. Etchart-Salas, and G. Montavon, Operating Parameters for Suspension and Solution Plasma-Spray Coatings, Surf. Coat. Technol., 2008, 202(18), p 4309-4317CrossRefGoogle Scholar
  28. 28.
    J. Oberste Berghaus, J.-G. Legoux, C. Moreau, F. Tarasi, and T. Chráska, Mechanical and Thermal Transport Properties of Suspension Thermal-Sprayed Alumina-Zirconia Composite Coatings, J. Therm. Spray Technol., 2008, 17(1), p 91-104CrossRefGoogle Scholar
  29. 29.
    C. Delbos, J. Fazilleau, V. Rat, J.-F. Coudert, P. Fauchais, and B. Pateyron, Phenomena Involved in Suspension Plasma Spraying Part 2: Zirconia Particle Treatment and Coating Formation, Plasma. Chem. Plasma. Phy., 2006, 26(4), p 393-414CrossRefGoogle Scholar
  30. 30.
    A. Joulia, W. Duarte, S. Goutier, M. Vardelle, A. Vardelle, and S. Rossignol, Tailoring the Spray Conditions for Suspension Plasma Spraying, J. Therm. Spray Technol., 2015, 24(1–2), p 24-29Google Scholar
  31. 31.
    H. Kassner, R. Siegert, D. Hathiramani, R. Vassen, and D. Stoever, Application of Suspension Plasma Spraying (SPS) for Manufacture of Ceramic Coatings, J. Therm. Spray Technol., 2008, 17(1), p 115-123CrossRefGoogle Scholar
  32. 32.
    S. Sampath, X.Y. Jiang, J. Matejicek, A.C. Leger, and A. Vardelle, Substrate Temperature Effects on Splat Formation, Microstructure Development and Properties of Plasma Sprayed Coatings Part I: Case Study for Partially Stabilized Zirconia, Mater. Sci. Engg. A., 1999, 272(1), p 181-188CrossRefGoogle Scholar
  33. 33.
    M. Marr and O. Kesler, Permeability and Microstructure of Suspension Plasma-Sprayed YSZ Electrolytes for SOFCs on Various Substrates, J. Therm. Spray Technol., 2012, 21(6), p 1334-1346CrossRefGoogle Scholar
  34. 34.
    A. Ganvir, N. Curry, S. Björklund, N. Markocsan, and P. Nylén, Characterization of Microstructure and Thermal Properties of YSZ Coatings Obtained by Axial Suspension Plasma Spraying (ASPS), J. Therm. Spray Technol., 2015, 24(7), p 1195-1204CrossRefGoogle Scholar
  35. 35.
    A. Vaidya, V. Srinivasan, T. Streibl, M. Friis, W. Chi, and S. Sampath, Process Maps for Plasma Spraying of Yttria-Stabilized Zirconia: An Integrated Approach to Design, Optimization and Reliability, Mater. Sci. Eng. A., 2008, 497(1), p 239-253CrossRefGoogle Scholar
  36. 36.
    A. Valarezo, W.B. Choi, W. Chi, A. Gouldstone, and S. Sampath, Process Control and Characterization of NiCr Coatings by HVOF-DJ2700 System: A Process Map Approach, J. Therm. Spray Technol., 2010, 19(5), p 852-865CrossRefGoogle Scholar
  37. 37.
    R. Vaßen, H. Kaßner, G. Mauer, and D. Stöver, Suspension Plasma Spraying: Process Characteristics and Applications, J. Therm. Spray Technol., 2010, 19(1), p 219-225CrossRefGoogle Scholar
  38. 38.
    M. Mutter, G. Mauer, R. Mücke, R. Vaßen, H.C. Back, and J. Gibmeier, Investigations on the Initial Stress Evolution During Atmospheric Plasma Spraying of YSZ by In Situ Curvature Measurement, J. Therm. Spray Technol., 2016, 25(4), p 672-683CrossRefGoogle Scholar
  39. 39.
    K. Shinoda, J. Colmenares-Angulo, A. Valarezo, and S. Sampath, Effect of Deposition Rate on the Stress Evolution of Plasma-Sprayed Yttria-Stabilized Zirconia, J. Therm. Spray Technol., 2012, 21(6), p 1224-1233CrossRefGoogle Scholar
  40. 40.
    A. Valarezo and S. Sampath, An Integrated Assessment of Process-Microstructure-Property Relationships for Thermal-Sprayed NiCr Coatings, J. Therm. Spray Technol., 2011, 20(6), p 1244-1258CrossRefGoogle Scholar
  41. 41.
    M. Gupta, G. Dwivedi, P. Nylen, A. Vackel, and S. Sampath, An Experimental Study of Microstructure-Property Relationships in Thermal Barrier Coatings, J. Therm. Spray Technol., 2013, 22(5), p 659-670CrossRefGoogle Scholar
  42. 42.
    C.G. Levi, J.W. Hutchinson, M.-H. Vidal-Sétif, and C.A. Johnson, Environmental Degradation of Thermal-Barrier Coatings by Molten Deposits, MRS Bull., 2012, 37(10), p 932-941CrossRefGoogle Scholar

Copyright information

© ASM International 2016

Authors and Affiliations

  • Ramachandran Chidambaram Seshadri
    • 1
  • Gopal Dwivedi
    • 1
  • Vaishak Viswanathan
    • 1
  • Sanjay Sampath
    • 1
  1. 1.Center for Thermal Spray ResearchStony Brook UniversityStony BrookUSA

Personalised recommendations