MedGadget, Worldwide Hip and Knee Orthopedic Surgical implant Market Shares, Trend, Growth, Strategy and Forecast 2016 to 2022. www.medgadget.com. Accessed 13 March 2016
R.B. Heimann (Ed.), Calcium Phosphate. Structure, Synthesis, Properties, and Applications, Nova Science Publishers Inc., New York, 2012
Google Scholar
J.D. Pasteris, B. Wopenka, and E. Valsami-Jones, Bone and Tooth Mineralization: Why Apatite?, Elements, 2008, 4, p 97-104
Article
Google Scholar
F.H. Albee and H.F. Morrison, Studies in Bone Growth: Triple Calcium Phosphate as a Stimulus to Osteogenesis, Ann. Surg., 1920, 71(1), p 32-39
Article
Google Scholar
J.L. Drummond, M.R. Simon, S.D. Brown, and R.J. Blattner, Degradation of Plasma-Sprayed Alumina on Metal Substrates in Physiological Media, J. Am. Ceram. Soc., 1981, 64(8), p C106-C110
Article
Google Scholar
M. Jarcho, Calcium Phosphate Ceramics as Hard Tissue Prosthetics, Clin. Orthop. Rel. Res., 1981, 157, p 259-278
Google Scholar
M. Jarcho, C.H. Bolen, M.B. Thomas, J. Bobick, J.F. Kay, and R.H. Doremus, Hydroxylapatite Synthesis and Characterization in Dense Polycrystalline Form, J. Mater. Sci., 1976, 11, p 2027-2035
Article
Google Scholar
R.Z. LeGeros, A. Chohayeb, and A. Shulman, Apatitic Calcium Phosphates: Possible Dental Restorative Materials, J. Dental Res., 1982, 61, p 343-347
Google Scholar
P. Ducheyne, L.L. Hench, A. Kagan, M. Martens, J.C. Mulier, and A. Burssens, The Effect of Hydroxyapatite Impregnation on Bonding of Porous Coated Implants, J. Biomed. Mater. Res., 1980, 14, p 225-237
Article
Google Scholar
L.L. Hench and J.M. Polak, Third-Generation Biomedical Materials, Science, 2002, 295, p 1014-1017
Article
Google Scholar
H.F. Hildebrand, N. Blanchemain, G. Mayer, F. Chai, M. Lefebvre, and F. Boschin, Surface Coatings for Biological Activation and Functionalization of Medical Devices, Surf. Coat. Technol., 2006, 200, p 6318-6324
Article
Google Scholar
R.F. Service, Tissue Engineers Build New Bone, Science, 2000, 289, p 1498-1500
Article
Google Scholar
M. Navarro, A. Michiardi, O. Castaño, and J.A. Planell, Biomaterials in Orthopaedics, J. R. Soc. Interface, 2008, 5(27), p 1137-1158
Article
Google Scholar
N. Groen, M. Guvendiren, H. Rabitz, W.J. Welsh, J. Kohn, and J. de Boer, Stepping into the Omics Era: Opportunities and Challenges for Biomaterials Science, Acta Biomater., 2016, 34, p 133-142
Article
Google Scholar
C.Y. Ning, L. Zhou, and G.X. Tan, Fourth-Generation Biomedical Materials, Mater. Today, 2016, 19(1), p 2-3
Article
Google Scholar
R.B. Heimann, Transition Metal-Substituted Calcium Orthophosphates with NaSiCON Structure: A Novel Type of Bioceramics, Calcium Phosphate. Structure, Synthesis, Properties, and Applications, R.B. Heimann, Ed., Nova Science Publishers Inc., New York, 2012, p 363-379
Google Scholar
C.C. Silva, M.P.F. Graça, M.A. Valente, and A.S.B. Sombra, AC and DC Conductivity Analysis of Hydroxyapatite and Titanium Calcium Phosphate Formed by Dry Ball Milling, J. Non Cryst. Solids, 2006, 352(9-20), p 1490-1494
Article
Google Scholar
W. Habraken, P. Habibovic, M. Epple, and M. Bohner, Calcium Phosphates in Biomedical Applications: Materials for the Future?, Mater. Today, 2016, 19(2), p 69-87
Article
Google Scholar
S.V. Dorozhkin, Calcium Orthophosphate Coatings, Films, and Layers, Progr. Biomater., 2012, 1, p 1-40
Article
Google Scholar
R.B. Heimann and H.D. Lehmann, Bioceramic Coatings for Medical Implants, Wiley-VCH, Weinheim, 2015
Book
Google Scholar
R.A. Surmenev, M.A. Surmeneva, and A.A. Ivanova, Significance of Calcium Phosphate Coatings for the Enhancement of New Bone Osteogenesis—A Review, Acta Biomater., 2014, 10, p 557-570
Article
Google Scholar
B. León and J.A. Jansen, Thin Calcium Phosphate Coatings for Medical Implants, Springer, New York, 2009
Book
Google Scholar
R.B. Heimann, Classic and Advanced Ceramics. From Fundamentals to Applications, Wiley-VCH, Weinheim, 2010
Book
Google Scholar
R.B. Heimann, Structure, Properties, and Biomedical Performance of Osteoconductive Bioceramic Coatings, Surf. Coat. Technol., 2013, 233, p 27-38
Article
Google Scholar
K. De Groot, R. Geesink, C.P.A.T. Klein, and P. Serekian, Plasma-Sprayed Coatings of Hydroxyapatite, J. Biomed. Mater. Res., 1987, 21, p 1375-1381; see also R.G.T. Geesink, K. De Groot, J.G.C. Wolke, and C.P.A.T. Klein, Hip Joints with Bioactive Hydroxyapatite Coating, G.H. Buchhorn, H.G. Willert, Eds., Technical Principles, Design and Safety of Joint Implants, Hogrefe & Huber Publishers, Seattle, 1994, p 259–275
R. McPherson, N. Gane, and T.J. Bastow, Structural Characterization of Plasma-Sprayed Hydroxylapatite Coatings, J. Mater. Sci., 1995, 6, p 327-334
Google Scholar
K.A. Gross and C.C. Berndt, Thermal Processing of Hydroxyapatite for Coating Production, J. Biomed. Mater. Res., 1998, 39(4), p 580-587
Article
Google Scholar
P. Cheang and K.A. Khor, Influence of Powder Characteristics on Plasma-Sprayed Hydroxyapatite Coatings, J. Thermal Spray Technol., 1996, 5(3), p 310-316
Article
Google Scholar
S.J. Ding, C.P. Ju, and J.H. Lin, Morphology and Immersion Behavior of Plasma-Sprayed Hydroxyapatite/Bioactive Glass Coatings, J. Mater. Sci. Mater. Med., 2000, 11(3), p 183-190
Article
Google Scholar
E. Lugscheider, M. Knepper, A. Heimberg, A. Dekker, and C.J. Kirkpatrick, Cytotoxicity Investigations of Plasma Sprayed Calcium Phosphate Coatings, J. Mater. Sci. Mater. Med., 1994, 5, p 371-375
Article
Google Scholar
H. Gruner, Coating of an Implant Body, Intern. Pat. Appl. WO 1986/006617 A1, 1986.
T.A. Vu and R.B. Heimann, Improvement of the Adhesion Strength of Plasma-Sprayed Bioceramic Coatings, DVS Berichte, 1996, 175, p 178-181
Google Scholar
E. Bouyer, F. Gitzhofer, and M.I. Boulos, The Suspension Plasma Spraying of Bioceramics by Induction Plasma, J. Mater., 1997, 49(2), p 58-62
Google Scholar
K.A. Gross and S. Saber-Samandari, Revealing Mechanical Properties of a Suspension Plasma Sprayed Coating with Nanoindentation, Surf. Coat. Technol., 2009, 203, p 2995-2999
Article
Google Scholar
Y. Huang, L. Song, X. Liu, Y. Xiao, Y. Wu, J. Chen, F. Wu, and Z. Gu, Hydroxylapatite Coatings Deposited by Liquid Precursor Plasma Spraying: Controlled Dense and Porous Microstructures and Osteoblastic Cell Responses, Biofabrication, 2010, 2(4), p 045003
Article
Google Scholar
Y.S. Borisov, A.L. Borisova, A.Y. Tunik, M.V. Karpets, S.G. Vojnarovich, A.N. Kislitsa, and E.K. Kuzmich-Yanchuk, Effect of Microplasma Spray Conditions on Structure, Phase Composition and Texture of Hydroxyapatite Coatings, Paton Weld. J., 2008, 9, p 4-6
Google Scholar
I. Demnati, M. Parco, D. Grossin, I. Fagoaga, C. Drouet, G. Barykin, C. Combes, I. Braceras, S. Gonsalves, and C. Rey, Hydroxyapatite Coating on Titanium by a Low-Energy Plasma-Spraying Mini-Gun, Surf. Coat. Technol., 2012, 206, p 2346-2353
Article
Google Scholar
J.C. Heughebaert and G. Montel, Conversion of Amorphous Tricalcium Phosphate into Apatitic Tricalcium Phosphate, Calcif. Tissue Int., 1982, 34, p S103-S108
Article
Google Scholar
C. Combes and C. Rey, Amorphous Calcium Phosphates: Synthesis, Properties and Uses in Biomaterials, Acta Biomater., 2010, 6(9), p 3362-3378
Article
Google Scholar
S. Peroos, Z. Du, and N.H. de Leeuw, A Computer Modelling Study of the Uptake, Structure and Distribution of Carbonate Defects in Hydroxyapatite, Biomaterials, 2006, 27(9), p 2150-2161
Article
Google Scholar
J.D. Pasteris, C.H. Yoder, and B. Wopenka, Molecular Water in Nominally Anhydrous Carbonated Hydroxylapatite: The Key to a Better Understanding of Bone Mineral, Am. Mineral., 2014, 99, p 16-27
Article
Google Scholar
J.E. Goldenberg, Z. Wilt, D.V. Schermerhorn, J.D. Pasteris, and C.H. Yoder, Structural Effect on Incorporated Water in Carbonated Apatites, Am. Miner., 2015, 100, p 274-280
Article
Google Scholar
C. Liu, Y. Huang, W. Shen, and J. Cui, Kinetics of Hydroxyapatite Precipitation at pH 10 and 11, Biomaterials, 2001, 22, p 301-306
Article
Google Scholar
J.D. Pasteris, A Mineralogical View of Apatite Biomaterials, Am. Miner., 2016 (in press)
R.B. Heimann, The Challenge and Promise of Low-Temperature Bioceramic Coatings: An Editorial, Surf. Coat. Technol., 2015. doi:10.1016/j.surfcoat.2015.12.082
Google Scholar
R.B. Heimann, Design of Novel Plasma-Sprayed Hydroxyapatite-Bond Coat Bioceramic Systems, J. Thermal Spray Technol., 1999, 8(4), p 597-604
Article
Google Scholar
R.B. Heimann, Novel Approaches Towards Design and Biofunctionality of Plasma-Sprayed Osteoconductive Calcium Phosphate Coatings for Biomedical Implants: The Concept of Bond Coats, Trends in Biomaterials Research, P.J. Pannone, Ed., Nova Science Publishers Inc., New York, 2007, p 1-80
Google Scholar
F.J. Martinez-Vázquez, P. Miranda, F. Guiberteau, and A. Pajares, Reinforcing Bioceramic Scaffolds with In Situ Synthesized ε-Polycaprolactone Coatings, J. Biomed. Mater. Res. A, 2013, 101(12), p 3551-3559
Article
Google Scholar
FDA, Guidance for Industry and FDA Staff—Class II Special Controls Guidance Document: Root-form Endosseous Dental Implants and Endosseous Dental Abutments. U.S. Dept. of Health and Human Services, Silver Spring, MD, 2004.
FDA, Guidance for Industry and FDA Staff—Non-clinical Information for Femoral Stem Prostheses. U.S. Dept. of Health and Human Services, Silver Spring, MD, 2007.
F. Fazan and P.M. Marquis, Dissolution Behavior of Plasma-Sprayed Hydroxyapatite Coatings, J. Mater. Sci., 2000, 11, p 787-792
Google Scholar
R.B. Heimann, Thermal Spraying of Biomaterials, Surf. Coat. Technol., 2006, 201, p 2012-2019
Article
Google Scholar
R.B. Heimann, P. Itiravivong, and A. Promasa, In vivo-Untersuchungen zur Osteointegration von Hydroxylapatit-beschichteten Ti6Al4V-Implantaten mit und ohne bioinerter Titanoxid-Haftvermittlerschicht, BIOmaterialien, 2004, 5(1), p 38-43
Article
Google Scholar
P. Itiravivong, A. Promasa, T. Laiprasert, T. Techapongworachai, S. Kuptniratsaikul, V. Thanakit, and R.B. Heimann, Comparison of Tissue Reaction and Osteointegration of Metal Implants Between Hydroxyapatite/Ti Alloy Coat: An Animal Experimental Study, J. Med. Assoc. Thail., 2003, 86(2), p S422-S430
Google Scholar
A. Herrera, J. Mateo, J. Gil-Albarova, A. Lobo Escolar, E. Ibarz, S. Gabarre, Y. Más, and L. Gracia, Cementless Hydroxyapatite Coated Hip Prostheses, BioMed. Res. Inter., 2015, 386561, p 13
Google Scholar
Y.L. Chen, T. Lin, A. Liu, M.M. Shi, B. Hu, Z.L. Shi, and S.G. Yan, Does Hydroxyapatite Coating have no Advantage over Porous Coating in Primary Total Hip Arthroplasty?. A Meta-analysis, J. Orthop. Surg. Res., 2016, 10, p 21. doi:10.1186/s13018-015-0161-4
Article
Google Scholar
W.H. Harris, Traumatic Arthritis of the Hip After Dislocation and Acetabular Fractures: Treatment by Mold Arthroplasty. An End-Result Study Using a New Method of Result Evaluation, J. Bone Surg. Am., 1969, 51(4), p 735-755
Google Scholar
W.W.R. Araujo, F.S. Teixeira, G.N. da Silva, D.M.F. Salvadori, M.C. Salvadori, and I.G. Brown, Cell Growth on 3D Microstructured Surfaces, Mater. Sci. Eng., C, 2016. doi:10.1016/j.msec.2016.03.026
Google Scholar
ASTM F1185-03, Standard Specification for Composition of Hydroxyapatite for Surgical Implants. ASTM International, West Conshohocken, PA. doi:10.1520/F1185-03R09, 2009.
ISO 13485, Medical Devices—Quality Management Systems—Requirements for Regulatory Purposes. International Organization for Standardization, Geneva, Switzerland, 2003.
R.B. Heimann, O. Graßmann, T. Zumbrink, and H.P. Jennissen, Biomimetic Processes During In Vitro Leaching of Plasma-Sprayed Hydroxylapatite Coatings for Endoprosthetic Applications, Mater. wiss. u. Werkstofftech., 2001, 32, p 913-921
Article
Google Scholar
J. Gallo, Particle Disease: Biologic Mechanism of Periprosthetic Osteolysis in Total Hip Arthroplasty, Innate Immun., 2013, 19(2), p 213-224
Article
Google Scholar
S. Pujari-Palmer, S. Chen, S. Rubino, H. Wenig, W. Xia, H. Engqvist, L.P. Tang, and M.K. Ott, In Vivo and In Vitro Evaluation of Hydroxyapatite Nanoparticle Morphology on the Acute Inflammatory Response, Biomaterials, 2016, 90, p 1-11
Article
Google Scholar
V. Karageorgiou and D. Kaplan, Porosity of 3D Biomaterial Scaffolds and Osteogenesis, Biomaterials, 2005, 26, p 5474-5491
Article
Google Scholar
K. Onuma, A. Oyane, T. Kokubo, G. Treboux, N. Kanzaki, and A. Ito, Precipitation Kinetics of Hydroxyapatite Revealed by the Continuous-Angle Laser Light-Scattering Technique, J. Phys. Chem. B, 2000, 104, p 11950-11956
Article
Google Scholar
P.F. Schofield, E. Valsami-Jones, I.R. Sneddon, J. Wilson, C.A. Kirk, N.J. Terrill, C.M. Martin, D. Lammie, and T.J. Wess, Nucleation and Growth of Nano-Apatite: Applications to Biomineralisation, Geochim. Cosmochim. Acta, 2005, 69(10), p 72
Google Scholar
Q.Q. Hoang, F. Siceri, A.J. Howard, and D.S.C. Yang, Bone Recognition Mechanism of Porcine Osteocalcin from Crystal Structure, Nature, 2003, 425, p 977-980
Article
Google Scholar
Y. Shiwaku, T. Anada, H. Yamazaki, Y. Honda, S. Morimoto, K. Sasaki, and O. Suzuki, Structural, Morphological and Surface Characteristics of Two Types of Octacalcium Phosphate-Derived Fluoride-Containing Apatitic Calcium Phosphates, Acta Biomater., 2012, 8(12), p 4417-4425
Article
Google Scholar
S.I. Stupp and P.V. Braun, Molecular Manipulation of Microstructures: Biomaterials, Ceramics, and Semiconductors, Science, 1997, 277, p 1242-1248
Article
Google Scholar
Y. Zhai and F.Z. Cui, Recombinant Human-Like Collagen Directed Growth of Hydroxyapatite Nanocrystals, J. Cryst. Growth, 2006, 291(1), p 202-208
Article
Google Scholar
H. Yang and Y.J. Wang, Morphology Control of Hydroxyapatite Microcrystals: Synergistic Effects of Citrate and CTAB, Mater. Sci. Eng. C, 2016, 62, p 160-165
Article
Google Scholar
H.C. Anderson, Vesicles Associated with Calcification in the Matrix of Epiphyseal Cartilage, J. Cell Biol., 1969, 41, p 59-72
Article
Google Scholar
H. Luo, G. Xiong, C. Zhang, D. Li, Y. Zhu, R. Guo, and Y. Wan, Surface Controlled Calcium Phosphate Formation on Three-Dimensional Bacterial Cellulose-Based Nanofibers, Mater. Sci. Eng. C, 2015, 49, p 526-533
Article
Google Scholar
R.O. Hynes, Integrins: Versatility, Modulation, and Signaling in Cell Adhesion, Cell, 1992, 69(1), p 11-25
Article
Google Scholar
P. Mandracci, F. Mossano, P. Rivolo, and S. Carossa, Surface Treatments and Functional Coatings for Biocompatibility Improvement and Bacterial Adhesion Reduction in Dental Implantology, Coatings, 2016, 6(1), p 7. doi:10.3390/coatings6010007
Article
Google Scholar
L.S. Nair and C.T. Laurencin, Polymeric Applications as Biomaterials in the Areas of Tissue Engineering and Controlled Drug Delivery, Adv. Biochem. Eng., 2006, 102, p 47-90
Google Scholar
O. Rahbek, S. Overgaard, M. Lind, K. Bendix, C. Buenger, and K. Søballe, Sealing Effect of Hydroxyapatite Coating on Peri-Implant Migration of Particles, J. Bone Joint Surg., 2001, 83, p 441-448
Article
Google Scholar
T.J. Callahan, J.B. Gantenberg, and B.E. Sands, Calcium Phosphate (Ca-P) Coating Draft Guidance for Preparation of Food and Drug Administration (FDA) Submissions for Orthopedic and Dental Endosseous Implants, Characterization and Performance of Calcium Phosphate Coatings for Implants, E. Horowitz and J.E. Parr, Ed., ASTM STP 1196, Philadelphia, 1994, p 185-197
Chapter
Google Scholar
E. Wintermantel and S.W. Ha, Biokompatible Werkstoffe und Bauweisen. Implantate für Medizin und Umwelt, Springer, Berlin, 1996
Book
Google Scholar
ISO 13779-2, Implants for Surgery-Hydroxyapatite. Part 2: Coatings of Hydroxylapatite. International Organization for Standardization, Geneva, Switzerland, 2008.
L. Sun, C.C. Berndt, K.A. Gross, and A. Kucuk, Material Fundamentals and Clinical Performance of Plasma-Sprayed Hydroxyapatite Coatings: A Review, J. Biomed. Mater. Res. A, 2001, 58(5), p 570-592
Article
Google Scholar
R.B. Heimann, O. Graßmann, M. Hempel, R. Bucher, and M. Härting, Phase Content, Resorption Resistance and Residual Stresses of Bioceramic Coatings, Applied Mineralogy in Research, Economy, Technology, Ecology and Culture.
Proc. 6
th
Intern. Congress on Applied Mineralogy, ICAM 2000, Göttingen, 2000, p 155–158.
M. Topić, T. Ntsoane, T. Hüttel, and R.B. Heimann, Microstructural Characterisation and Stress Determination in As-Plasma Sprayed and Incubated Bioconductive Hydroxyapatite Coatings, Surf. Coat. Technol., 2006, 201(6), p 3633-3641
Article
Google Scholar
E. Dörre, Hydroxylapatit-Keramik für den medizinischen Einsatz, Künstlicher Knochenersatz in der Orthopädie und Traumatologie, A. Kirgis and W. Noack, Ed., Pontenagel Press, Bochum, 1992, p 17-23
Google Scholar
R.B. Heimann, N. Schürmann, and R.T. Müller, In Vitro and In Vivo Performance of Ti6Al4V Implants with Plasma-Sprayed Osteoconductive Hydroxylapatite-Bioinert Titania Bond Coat ‘duplex’ Systems: An Experimental Study in Sheep, J. Mater. Sci., 2004, 15, p 1945-2052
Google Scholar
P. Ducheyne, S. Radin, and L. King, The Effect of Calcium Phosphate Ceramic Composition and Structure on In Vitro Behavior. I. Dissolution, J. Biomed. Mater. Res., 1993, 27, p 5-34
Article
Google Scholar
J.D. De Bruijn, Y. Bovell, and C. van Blitterswijk, Structural Arrangement at the Interface Between Plasma Sprayed Calcium Phosphates and Bone, Biomaterials, 1994, 15, p 543-550
Article
Google Scholar
E.R. Kreidler and F.A. Hummel, Phase Relations in the System SrO-P2O5 and the Influence of Water Vapor on the Formation of Sr4P2O9, Inorg. Chem., 1967, 6(5), p 884-891
Article
Google Scholar
P.V. Riboud, Composition et stabilité des phases a structure d’apatite dans le systeme CaO-P2O5-oxide de Fer-H2O a haute temperature, Ann. Chim., 1973, 8, p 381-390
Google Scholar
H.C.W. Skinner, Studies in the Basic Mineralizing System, CaO-P2O5-H2O, Calc. Tiss. Res., 1974, 14, p 3-14
Article
Google Scholar
K.A. Gross, C.C. Berndt, P. Stephens, and R. Dinnebier, Oxyapatite in Hydroxyapatite Coatings, J. Mater. Sci., 1998, 33, p 3985-3991
Article
Google Scholar
N. Antolotti, S. Bertini, C. Fanaro, X. Ranz, C. Rey, F. Rusticchelli, and Scrivani, Interface Characterization of Different Apatite Coatings, Thermal Spray. Meeting the Challenges of the 21st Century, C. Coddet, Ed., Proc. 15th ITSC, May 25–29, 1998, Nice, France, 1998, p 1121–1126.
O. Graßmann and R.B. Heimann, Compositional and Microstructural Changes of Engineered Plasma-Sprayed Hydroxyapatite Coatings on Ti6Al4V Substrates During Incubation in Protein-Free Simulated Body Fluid, J. Biomed. Mater. Res., 2000, 53(6), p 685-693
Article
Google Scholar
S. Dyshlovenko, B. Pateyron, L. Pawłowski, and D. Murano, Numerical Simulation of Hydroxyapatite Powder Behaviour in Plasma Jet, Surf. Coat. Technol., 2004, 179, p 110-117
Article
Google Scholar
T. Kijima and M. Tsutsumi, Preparation and Thermal Properties of Dense Polycrystalline Oxyhydroxyapatite, J. Am. Ceram. Soc., 1979, 62(9–10), p 455-560
Article
Google Scholar
Rey, C., personal communication.
M.T. Carayon and J.L. Lacout, Study of the Ca/P Atomic Ratio of the Amorphous Phase in Plasma-Sprayed Hydroxyapatite Coatings, J. Solid State Chem., 2003, 172, p 339-350
Article
Google Scholar
R.B. Heimann, Characterization of As-Plasma-Sprayed and Incubated Hydroxyapatite Coatings with High-Resolution Techniques, Mater. wiss. u. Werkstofftech., 2009, 40(1–2), p 23-30
Article
Google Scholar
M.A. Bredig, H.H. Franck, and H. Füldner, Beiträge zur Kenntnis der Kalk-Phosphorsäure-Verbindungen II, Z. Elektrochem., 1933, 39(12), p 959-969
Google Scholar
J.C. Trombe, and G. Montel, Some Features of the Incorporation of Oxygen in Different Oxidation States in the Apatite Lattice. J. Inorg. Nucl. Chem., 1978, 40, p 15–21, p 27–30.
R.B. Heimann, Tracking the Thermal Decomposition of Plasma-Sprayed Hydroxylapatite, Am. Mineral., 2015, 100, p 2419-2425
Article
Google Scholar
C.J. Liao, F.H. Lin, K.S. Chen, and J.S. Sun, Thermal Decomposition and Reconstitution of Hydroxyapatite in Air Atmosphere, Biomaterials, 1999, 20, p 1807-1813
Article
Google Scholar
J.C. Trombe and G. Montel, Sur la preparation de l’oxyapatite phospho-calcique, Comp. Rend. Acad. Sci. Paris, 1971, 273, p 462-465
Google Scholar
P. Hartmann, C. Jäger, J. Vogel, and K. Meyer, Solid-State NMR, X-ray Diffraction, and Infrared Characterization of Local Structure in Heat-Treated Oxyhydroxyapatite Microcrystals: An Analogy of the Thermal Deposition of Hydroxyapatite During Plasma-Spray Procedure, J. Solid State Chem., 2001, 160, p 460-468
Article
Google Scholar
R.B. Heimann, H.V. Tran, and P. Hartmann, Laser-Raman and Nuclear Magnetic Resonance (NMR) Studies on Plasma-Sprayed Hydroxylapatite Coatings: Influence Of Bioinert Bond Coats on Phase Composition and Resorption Kinetics in Simulated Body Fluid, Mater.-wiss. u. Werkstofftechn., 2003, 34(12), p 1163-1169
Article
Google Scholar
K.A. Gross, C.C. Berndt, and H. Herman, Amorphous Phase Formation in Plasma-Sprayed Hydroxyapatite Coatings, J. Biomed. Mater. Res., 1998, 39(3), p 407-414
Article
Google Scholar
R.B. Heimann and R. Wirth, Formation and Transformation of Amorphous Calcium Phosphates on Titanium Alloy Surfaces During Atmospheric Plasma Spraying and Their Subsequent In Vitro Performance, Biomaterials, 2006, 27, p 823-831
Article
Google Scholar
J.M. Houben, Relations of the Adhesion of Plasma Sprayed Coatings to the Process Parameters Size, Velocity and Heat Content of the Spray Particles. Unpublished Ph.D. dissertation, Technische Universiteit Eindhoven, The Netherlands, 1988.
R.B. Heimann and J. Kleiman, Shock-Induced Growth of Superhard Materials, Crystals. Growth, Properties, and Applications, H.C. Freyhardt, Ed., Springer, Berlin, 1988, p 1-73
Google Scholar
S. Danouni, A. Abdellah el-hadj, M. Zirari, and M. Belharizi, A Thermo-Mechanical Analysis of a Particle Impact During Thermal Spraying, Appl. Surf. Sci., 2016, 371, p 213-223
Article
Google Scholar
J. Götze, H. Hildebrandt, and R.B. Heimann, Charakterisierung des in vitro-Resorptionsverhaltens von plasmagespritzten Hydroxylapatit-Schichten, BIOmaterialien, 2001, 2(1), p 54-60
Article
Google Scholar
T.P. Ntsoane, M. Topic, M. Härting, R.B. Heimann, and C. Theron, Spatial and Depth-Resolved Studies of Air Plasma-Sprayed Hydroxyapatite Coatings by Means of Diffraction Techniques: Part I, Surf. Coat. Technol., 2016, 294, p 153-163
Article
Google Scholar
K.A. Gross, V. Gross, and C.C. Berndt, Thermal Analysis of Amorphous Phases in Hydroxyapatite Coatings, J. Am. Ceram. Soc., 1998, 81(1), p 106-112
Article
Google Scholar
L. Keller and W.A. Dollase, X-ray Determination of Crystalline Hydroxyapatite to Amorphous Calcium Phosphate Ratio in Plasma Sprayed Coatings, J. Biomed. Mater. Res., 2000, 49, p 244-249
Article
Google Scholar
I. Demnati, D. Grossin, C. Combes, and C. Rey, Plasma-Sprayed Apatite Coatings: Review of Physical-Chemical Aspects and Their Biological Consequences, J. Med. Biol. Eng., 2014, 34(1), p 1-7
Article
Google Scholar
S. Saber-Samandari, K. Alamara, and S. Saber-Samandari, Calcium Phosphate Coatings: Morphology, Micro-Structure and Mechanical Properties, Ceram. Int., 2014, 40(1), p 563-572
Article
Google Scholar
K.A. Gross and M.R. Phillips, Identification and Mapping of the Amorphous Phase in Plasma-Sprayed Hydroxyapatite Coatings Using Scanning Cathodoluminescence Microscopy, J. Mater. Sci. Mater. Med., 1998, 9(12), p 797-802
Article
Google Scholar
K.A. Gross, M.R. Phillips, and Y. Suetsugu, Cathodoluminescence Emission for Differentiating the Degree of Carbonation in Apatites, S. Giannini, A. Moroni, Eds., Key Eng. Mater., Bioceramics, 2000, 192, p 179–182. Zürich-Uetikon, TransTech Publ.
K. De Groot, Medical Applications of Calcium Phosphate Bioceramics, J. Ceram. Soc. Jpn, 1991, 99, p 917-926
Article
Google Scholar
P. Leali Tranquilli, A. Merolli, C. Gabbi, A. Cacchioli, and G. Gonizzi, Evaluation of Different Preparations of Plasma-Spray Hydroxyapatite Coatings on Titanium Alloy and Duplex Stainless Steel in the Rabbit, J. Mater. Sci., 1994, 5, p 345-349
Google Scholar
D. De Santis, C. Guerriero, P.F. Nocini, A. Ungersbock, G. Richards, P. Gotte, and U. Armato, Adult Human Bone Cells from Jaw Bones Cultured on Plasma-Sprayed or Polished Surfaces of Titanium or Hydroxyapatite Discs, J. Mater. Sci, 1996, 7(1), p 21-28
Google Scholar
R.Z. LeGeros, Calcium Phosphates in Oral Biology and Medicine, Monogr. Oral Sci, Karger, Basel, 1991
Book
Google Scholar
K. De Groot, C.P.A.T. Klein, J.G.C. Wolke, and J. de Blieck-Hogervorst, Plasma-Spraying of Calcium Phosphate, Handbook of Bioactive Ceramics, T. Yamamuro, L.L. Hench, and J. Wilson, Ed., CRC Press, Boca Raton, 1990, p 3-15
Google Scholar
R.G. Courtney-Harris, M.V. Kayser, and S. Downes, Comparison of the Early Production of Extracellular Matrix on Dense Hydroxyapatite and Hydroxyapatite-Coated Titanium in Cell and Organ Culture, Biomaterials, 1994, 16(6), p 489-495
Article
Google Scholar
R.Z. LeGeros, I. Orly, M. Gregoire, and G. Daculsi, The Bone-Biomaterials Interface, Substrate Surface Dissolution and Interfacial Biological Mineralization, J.E. Davies, Ed., University of Toronto Press, Toronto, 1991, p 76-88
Google Scholar
L. Chou, B. Marek, and W.R. Wagner, Effect of Hydroxyapatite Coating Crystallinity on Biosolubility, Cell Attachment Efficiency and Proliferation In Vitro, Biomaterials, 1999, 19, p 977-985
Article
Google Scholar
B.S. Ng, I. Annergren, A.M. Soutar, K.A. Khor, and A.E. Jarfors, Characterisation of a Duplex TiO2/CaP Coating on Ti6Al4V for Hard Tissue Replacement, Biomaterials, 2005, 26(10), p 1087-1095
Article
Google Scholar
E. Park, R.A. Condrate, D.H. Lee, K. Kociba, and P.K. Gallagher, Characterization of Hydroxyapatite: Before and After Plasma Spraying, J. Mater. Sci., 2002, 13, p 211-218
Google Scholar
M.S. Tung and D. Skrtic, Interfacial Properties of Hydroxyapatite, Fluorapatite and Octacalcium Phosphate. Octacalcium phosphate, L.C. Chow, and E.D. Eanes, Eds., Karger, Basel, Monogr. Oral Sci., 2001, 18, p 112–129.
A.C. Tas, The Use of Physiological Solutions or Media in Calcium Phosphate Synthesis and Processing, Acta Biomater., 2014, 10(5), p 1771-1792
Article
Google Scholar
M.E. Fernández, C. Zorilla-Cangas, R. García-García, J.A. Ascencio, and J. Reyes-Gasga, New Model for the Hydroxyapatite-Octacalcium Phosphate Interface, Acta Cryst. B, 2003, 59, p 175-181
Article
Google Scholar
W.E. Brown, Octacalcium Phosphate and Hydroxyapatite: Crystal Structure of Octacalcium Phosphate, Nature, 1962, 196, p 1048-1050
Article
Google Scholar
A. Brangule and K.A. Gross, Importance of FTIR Spectra Deconvolution for the Analysis of Amorphous Calcium Phosphates, Mater. Sci. Eng., 2015, 77, p 012027. doi:10.1088/1757-899X/77/1/012027
Google Scholar
R.B. Heimann, Plasma Spray Coating. Principles and Applications. 2nd edn, Wiley, Weinheim, 2008
Google Scholar
C.Y. Yang, B.C. Wang, E. Chang, and J.D. Wu, Bond Degradation at the Plasma-Sprayed HA Coating/Ti-6Al-4V Alloy Interface: An In Vitro Study, J. Mater. Sci., 1995, 6, p 258-265
Google Scholar
J.E. Lemons, Biodegradation and Wear of Total Joint Replacements, Bone Implant Interface, H.U. Cameron, Ed., Mosby, St. Louis, 1994, p 307-317
Google Scholar
K.S. Lew, R. Othman, K. Ishikawa, and F.Y. Yeoh, Macroporous Bioceramics: A Remarkable Material for Bone Regeneration, J. Non Cryst. Solids, 2012, 188, p 207-219
Google Scholar
R. Jaworski, L. Pawłowski, C. Pierlot, F. Roudet, S. Kozerski, and F. Petit, Recent Developments in Suspension Plasma Sprayed Titanium Oxide and Hydroxyapatite Coatings, J. Therm. Spray Technol., 2010, 19(1–2), p 240-247
Article
Google Scholar
G. Reisel and R.B. Heimann, Correlation Between Surface Roughness of Plasma-Sprayed Chromium Oxide Coatings and Powder Grain Size Distribution: A Fractal Approach, Surf. Coat. Technol., 2004, 185, p 215-221
Article
Google Scholar
R.B. Heimann, On the Self-Affine Fractal Geometry of Plasma-Sprayed Surfaces, J. Thermal Spray Technol., 2011, 20(4), p 898-908
Article
Google Scholar
F. Gentile, L. Tirinato, E. Battista, F. Causa, C. Liberale, E.M. di Fabrizio, and P. Decuzzi, Cells Preferentially Grow on Rough Substrates, Biomaterials, 2010, 31(28), p 7205-7212
Article
Google Scholar
R.A. Gittens, R. Olivares-Navarrete, Z. Schwartz, and B.D. Boyan, Implant Osseointegration and the Role of Microroughness and Nanostructures: Lessons for Spine Implants, Acta Biomater., 2014, 10(8), p 3363-3371
Article
Google Scholar
B.G.X. Zhang, D.E. Myers, G.G. Wallace, M. Brandt, and P.F.M. Choong, Bioactive Coatings for Orthopaedic Implants—Recent Trends in Development of Implant Coatings, Int. J. Mol. Sci., 2014, 15(7), p 11878-11921
Article
Google Scholar
J. Lincks, B.D. Boyan, C.R. Blanchard, C.H. Lohmann, Y. Liu, D.L. Cochran, D.D. Dean, and Z. Schwartz, Response of MG63 Osteoblast-Like Cells to Titanium and Titanium Alloy is Dependent on Surface Roughness and Composition, Biomaterials, 1998, 19, p 2219-2232
Article
Google Scholar
A. Oyane, M. Kakehara, I. Sakamaki, A. Pyatenko, H. Yashiro, A. Ito, and K. Torizuka, Biomimetic Apatite Coating on Yttria-Stabilized Tetragonal Zirconia Utilizing Femtosecond Laser Surface Processing, Surf. Coat. Technol., 2016. doi:10.1016/j.surfcoat.2016.03.075
Google Scholar
Z. Schwartz, A.L. Raines, and B.D. Boyan, The Effect of Substrate Microtopography on Osseointegration of Titanium Implants, Comprehensive Biomaterials, P. Ducheyne, K.E. Healy, D.W. Hutmacher, D.W. Grainger, and C.J. Kirkpatrick, Ed., Elsevier, Amsterdam, 2011, p 343-352
Chapter
Google Scholar
K.A. Gross, B. Ben-Nissan, W.R. Walsh, and E. Swarts, Analysis of Retrieved Hydroxyapatite Coated Orthopaedic Implants, Thermal Spray. Meeting the Challenge of the 21st Century, C. Coddet, Ed., Proc. 15th Intern. Thermal Spray Conf., Nice, France, May 25–29, 1998. Vol. 2, 1133–1138.
R. Lacombe, Adhesion Measurement Methods: Theory and Practice, CRC Taylor & Francis, Boca Raton, 2006
Google Scholar
M.J. Filiaggi, N.A. Coombs, and R.M. Pilliar, Characterization of the Interface in the Plasma-Sprayed HAp Coating/Ti-6Al-4V Implant System, J. Biomed. Mater. Res., 1991, 25, p 1211-1229
Article
Google Scholar
T.J. Webster, C. Ergun, R.H. Doremus, and W.A. Lanford, Increased Osteoblast Adhesion on Titanium-Coated Hydroxylapatite that Forms CaTiO3, J. Biomed. Mater. Res. A, 2003, 67(3), p 975-980
Article
Google Scholar
M. Ducos, B. Bossuat, S. Barradas, M. Jeandin, M. Boustie, C. Bolis, and L. Berthe, Non-Destructive Adhesion Testing of Plasma-Sprayed Coatings Using Ultrasounds and Laser Shocks, Thermal Spray 2004: Advances in Technology and Applications, C.C. Berndt, K.A. Khor, and E. Lugscheider, Ed., Proc. ITSC, Osaka, 2004, p 163-168
Google Scholar
Y. Watanabe, S. Fujisawa, A. Yonezu, and X. Chen, Quantitative Evaluation of Adhesion Quality of Surface Coating by Using Pulse Laser-Induced Ultrasonic Waves, Surf. Coat. Technol., 2016, 286, p 231-238
Article
Google Scholar
V. Guipont, M. Jeandin, S. Bansard, K.A. Khor, M. Nivard, L. Berthe, J.P. Cuq-Lelandais, and M. Boustie, Bond Strength Determination of Hydroxyapatite Coatings on Ti-6Al-4V Substrates Using the Laser Shock Adhesion Test (LASAT), J. Biomed. Mater. Res. A, 2010, 95(4), p 1096-1104
Article
Google Scholar
C.Y. Yang, B.C. Wang, W.J. Chang, E. Chang, and J.D. Wu, , Mechanical and Histological Evaluation of Cobalt-Chromium Alloy and Hydroxyapatite Plasma-Sprayed Coatings in Bone. J. Mater. Sci.: Mater. Med., 1996, 7, p.167-174.
A.E. Porter, P. Taak, L.W. Hobbs, M.J. Coathup, G.W. Blunn, and M. Spector, Bone Bonding to Hydroxyapatite and Titanium Surfaces on Femoral Stems Retrieved from Human Subjects at Autopsy, Biomaterials, 2004, 25(21), p 5199-5208
Article
Google Scholar
T. Kokubo, H.M. Kim, and M. Kawashita, Novel Bioactive Materials with Different Mechanical Properties, Biomaterials, 2003, 24, p 2161-2175
Article
Google Scholar
N. Ohtsu, K. Saito, K. Asami, and T. Hanawa, Characterization of CaTiO3 Thin Films Prepared by Ion-Beam Assisted Deposition, Surf. Coat. Technol., 2006, 200(18/19), p 5455-5461
Article
Google Scholar
D. Wei, Y. Zhou, D. Jia, and Y. Wang, Structure of Calcium Titanate/Titania Bioceramic Composite Coatings on Titanium Alloy and Apatite Deposition on Their Surfaces in a Simulated Body Fluid, Surf. Coat. Technol., 2007, 201, p 8715-9722
Article
Google Scholar
Y.-P. Lu, M.-S. Li, S.T. Li, Z.G. Wang, and R.F. Zhu, Plasma-Sprayed Hydroxyapatite + Titania Composite Bond Coat for Hydroxyapatite Coating on Titanium Substrate, Biomaterials, 2004, 25(18), p 4393-4403
Article
Google Scholar
E. Park, R.A. Condrate, D.T. Hoelzer, and G.S. Fischman, Interfacial Characterization of Plasma-Spray Coated Calcium Phosphate on Ti-6Al-4V, J. Mater. Sci., 1998, 9(11), p 643-649
Google Scholar
L. Pawłowski, The Science and Engineering of Thermal Spray Coatings, 2nd ed., Wiley, Chichester, 2008
Book
Google Scholar
R. Kumar, P. Cheang, and K.A. Khor, Radio Frequency (RF) Suspension Plasma Sprayed Ultra-Fine Hydroxyapatite (HA)/Zirconia Composite Powders, Biomaterials, 2003, 24, p 2611-2621
Article
Google Scholar
A. Rapacz-Kmita, A. Ślósarczyk, and Z. Paszkiewicz, Mechanical Properties of HAp-ZrO2 Composites, J. Eur. Ceram. Soc., 2006, 26(8), p 1481-1488
Article
Google Scholar
C.Y. Ning, Y.J. Wang, X.F. Chen, N.R. Zhao, J.D. Ye, and G. Wu, Mechanical Performance and Microstructural Characteristics of Plasma-Sprayed Biofunctionally Gradient HA-ZrO2-Ti Coatings, Surf. Coat. Technol., 2005, 200(7), p 2403-2408
Article
Google Scholar
J.N. Sherwood and R.I. Ristic, The Influence of Mechanical Stress on the Growth and Dissolution of Crystals, Chem. Eng. Sci., 2001, 58(7), p 2267-2280
Article
Google Scholar
P.J. Withers and H.K.D.H. Bhadeshia, Residual Stress. Part 1: Measurement Techniques, Mater. Sci. Technol., 2001, 17(4), p 355-365
Article
Google Scholar
J. Matejicek and S. Sampath, Intrinsic Residual Stresses in Single Splats Produced by Thermal Spray Processes, Acta Mater., 2001, 49, p 1993-1999
Article
Google Scholar
J. Matejicek and S. Sampath, In Situ Measurement of Residual Stresses and Elastic Moduli in Thermal Sprayed Coatings. Part 1: Apparatus and Analysis, Acta Mater., 2003, 51(3), p 863-872
Article
Google Scholar
S. Kuroda and T.W. Clyne, The Quenching Stress in Thermally Sprayed Coatings, Thin Solid Films, 1991, 200, p 49-66
Article
Google Scholar
H. Salmang, H. Scholze, and R. Telle, Keramik, 7th ed., Springer, Berlin, 2007
Google Scholar
Y.C. Tsui, C. Doyle, and T.W. Clyne, An Analytical Model for Predicting Residual Stresses in Progressively Deposited Coatings Part 1: Planar Geometry, Thin Solid Films, 1997, 306, p 23-33
Article
Google Scholar
Y.C. Tsui, C. Doyle, and T.W. Clyne, Plasma Sprayed Hydroxyapatite Coatings on Titanium Substrate Part 1. Mechanical Properties and Residual Stress Levels, Biomaterials, 1998, 19, p 2013-2029
Google Scholar
B. Cofino, P. Fogarassy, P. Millet, and A. Lodini, Thermal Residual Stresses Near the Interface Between Plasma-Sprayed Hydroxyapatite Coating and Titanium Substrate: Finite Element Analysis and Synchrotron Radiation Measurements, J. Biomed. Mater. Res. A, 2004, 70, p 20-27
Article
Google Scholar
B. Kasemo and J. Lausmaa, The Biomaterial-Tissue Interface and Its Analogues in Surface Science and Technology, The Bone-Biomaterials Interface, J.E. Davies, Ed., University of Toronto Press, Toronto, 1991, p 19-32
Google Scholar
J.D. Pasteris, personal communication.