Journal of Thermal Spray Technology

, Volume 25, Issue 3, pp 595–604 | Cite as

Investigations of Local Corrosion Behavior of Plasma-Sprayed FeCr Nanocomposite Coating by SECM

  • Xi Shi
  • Mingyong Shu
  • Qingdong Zhong
  • Junliang Zhang
  • Qiongyu Zhou
  • Quoc Binh Bui
Technical Note

Abstract

FeCr alloy coating can be sprayed on low-carbon steel to improve the corrosion resistance because of FeCr alloy’s high anti-corrosion capacity. In this paper, Fe microparticles/Cr nanoparticles coating (NFC) and FeCr microparticles coating (MFC) were prepared by atmospheric plasma spraying and NFC was heat-treated under hydrogen atmosphere at 800 °C (HNFC). EDS mapping showed no penetration of Ni in MFC and NFC while penetration of Ni occurred in HNFC. X-ray diffraction results indicated the form of the NiCrFe (bcc) solid solution in HNFC. SECM testing in 3.5 (wt.%) NaCl revealed that the anti-corrosion capacity of NFC improved compared with MFC, while HNFC improved further.

Keywords

corrosion protection heat treatment nanocomposite plasma spray forming protective coatings 

References

  1. 1.
    P.Z. Yu, X.B. Shi, W.H. Dou, and W.D. Hui, Influence of Surface Nitriding Treatment on Rolling Contact Behavior of Fe-Based Plasma Sprayed Coating, Appl. Surf. Sci., 2013, 266, p 420-425CrossRefGoogle Scholar
  2. 2.
    T. Ando, N. Itoh, K. Togoe, and Y. Harada, Measurement of Permeable Pores in High Cr-Fe Alloy Plasma Sprayed Coating Formed on the Inner Surface of Aluminum Container for NAS Batteries Cell, J. Japan Inst. Metals, 2007, 71(1), p 90-95CrossRefGoogle Scholar
  3. 3.
    T. Ando, K. Togoe, and Y. Harada, Sulfide Corrosion Resistance and Adhesive Strength of a High Cr-Fe Alloy Plasma Spray Coating Applied to the Inner Surface of Cylindrical Aluminum Containers of NAS Batteries to Store Electrical Power for Extended Period of Time, J. Jpn. Inst. Metals, 2008, 72(8), p 581-586CrossRefGoogle Scholar
  4. 4.
    G. Antou, G. Montavon, F. Hlawka, A. Cornet, and C. Coddet, Characterizations of the Pore-Crack Network Architecture of Thermal-Sprayed Coatings, Mater. Charact., 2004, 53(5), p 361-372CrossRefGoogle Scholar
  5. 5.
    V. Chawla, B.S. Sidhu, D. Puri, and S. Prakash, Performance of Plasma Sprayed Nano Structured and Conventional Coatings, J. Aust. Ceram. Soc., 2008, 44, p 56-62Google Scholar
  6. 6.
    M. Gel, E.H. Jordan, Y.H. Sohn, D. Goberman, L. Shaw, and T.D. Xiao, Development and Implementation of Plasma Sprayed Nano Structured Ceramic Coatings, Surf. Coat. Technol., 2001, 146-147, p 48-54CrossRefGoogle Scholar
  7. 7.
    P.Z. Yu, X.B. Shi, W.H. Dou, and P.C. Huan, Investigation of Rolling Contact Fatigue Lives of Fe-Cr Alloy Coatings Under Different Loading Conditions, Surf. Coat. Technol., 2010, 204(9-10), p 1405-1411CrossRefGoogle Scholar
  8. 8.
    O. Culha, E. Celik, N.F. Akazem, I. Birlik, M. Toparli, and A. Turk, Microstructural, Thermal and Mechanical Properties of HVOF Sprayed Ni-Al-Based Bond Coatings on Stainless Steel Substrate, J. Mater. Process. Technol., 2008, 204(1-3), p 221-230CrossRefGoogle Scholar
  9. 9.
    Y. Gonzalez-Garcia, G.T. Burstein, S. Gonzalez, and R.M. Souto, Imaging Metastable Pits on Austenitic Stainless steel In Situ at the Open-Circuit Corrosion Potential, Electrochem. Commun., 2004, 6(7), p 637-642CrossRefGoogle Scholar
  10. 10.
    R.M. Souto, Y. Gonzalez-Garcia, and S. Gonzalez, Evaluation of the Corrosion Performance of Coil-Coated Steel Sheet as Studied by scanning Electrochemical Microscopy, Corros. Sci., 2008, 50(6), p 1637-1643CrossRefGoogle Scholar
  11. 11.
    A. Davoodi, J. Pan, C. Leygraf, and S. Norgren, In Situ Investigation of Localized Corrosion of Aluminum Alloys in Chloride Solution Using Integrated EC-AFM/SECM Techniques, Electrochem. Solid State Lett., 2005, 8(6), p B21-B24CrossRefGoogle Scholar
  12. 12.
    C. Gabrielli, S. Joiret, M. Keddam, H. Perrot, N. Portail, P. Rousseau, and V. Vivier, Development of a Coupled SECM-EQCM Technique for the Study of Pitting Corrosion on Iron, J. Electrochem. Soc., 2006, 153(3), p B68-B74CrossRefGoogle Scholar
  13. 13.
    T.E. Lister and P.J. Pinhero, Scanning Electrochemical Microscopy Study of Corrosion Dynamics on Type 304 Stainless Steel, Electrochem. Solid-State Lett., 2002, 5(11), p B33-B36CrossRefGoogle Scholar
  14. 14.
    T.E. Lister and P.J. Pinhero, The Effect of Localized Electric Fields on the Detection of Dissolved Sulfur Species from Type 304 Stainless Steel Using Scanning Electrochemical Microscopy, Electrochim. Acta, 2003, 48(17), p 2371-2378CrossRefGoogle Scholar
  15. 15.
    E. Volker, C.G. Inchauspe, and E.J. Calvo, Scanning Electrochemical Microscopy Measurement of Ferrous Ion Fluxes During Localized Corrosion of Steel, Electrochem. Commun., 2006, 8(1), p 179-183CrossRefGoogle Scholar
  16. 16.
    R.M. Souto, Y. Gonzalez-Garcia, and S. Gonzalez, In Situ Monitoring of Electroactive Species by Using the Scanning Electrochemical Microscope. Application to the Investigation of Degradation Processes at Defective Coated Metals, Corros. Sci., 2005, 47(12), p 3312-3323CrossRefGoogle Scholar
  17. 17.
    A.C. Bastos, A.M. Simoes, S. Gonzalez, Y. Gonzalez-Garcia, and R.M. Souto, Application of the Scanning Electrochemical Microscope to the Examination of Organic Coatings on Metallic Substrates, Prog. Org. Coat., 2005, 53(3), p 177-182CrossRefGoogle Scholar
  18. 18.
    B.B. Katemann, A. Schulte, E.J. Calvo, M. Koudelka-Hep, and W. Schuhmann, Localised Electrochemical Impedance Spectroscopy with High Lateral Resolution by Means Of Alternating Current Scanning Electrochemical Microscopy Schuhmann, Electrochem. Commun., 2002, 4(2), p 134-138CrossRefGoogle Scholar
  19. 19.
    B.B. Katemann, C.G. Inchauspe, P.A. Castro, A. Schulte, E.J. Calvo, and W. Schuhmann, Precursor Sites for Localised Corrosion on Lacquered Tinplates Visualised by Means of Alternating Current Scanning Electrochemical Microscopy, Electrochim. Acta, 2003, 48(9), p 1115-1121CrossRefGoogle Scholar
  20. 20.
    P. Carpio, R. Moreno, A. Gomez, M.D. Salvador, and E. Sanchez, Role of Suspension Preparation in the Spray Drying Process to Obtain Nano/Submicrostructured YSZ Powders for Atmospheric Plasma Spraying, J. Eur. Ceram. Soc., 2015, 35(1), p 237-247CrossRefGoogle Scholar
  21. 21.
    A.J. Bard and M.V. Mirkin, Electroanalytical Chemistry, Vol 18, A.J. Bard, Ed., Marcel Dekker, New York, 1993, p 243 Google Scholar
  22. 22.
    A.J. Bard, F.R. Fan, and M.V. Mirkin, Physical Electrochemistry: Principles, Methods and Applications, I. Rubinstein, Ed., Marcel Dekker, New York, 1995, p 209 Google Scholar
  23. 23.
    A.C. Bastos, A.M. Simoes, S. Gonzalez, Y. Gonzalez-Garcia, and R.M. Souto, Imaging Concentration Profiles of Redox-Active Species in Open-Circuit Corrosion Processes with the Scanning Electrochemical Microscope, Electrochem. Commun., 2004, 6(11), p 1212-1215CrossRefGoogle Scholar
  24. 24.
    A.M. Simoes, A.C. Bastos, M.G. Ferreira, Y. Gonzalez-Garca, S. Gonzalez, and R.M. Souto, Use of SVET and SECM to Study the Galvanic Corrosion of an Iron-Zinc Cell, Corros. Sci., 2007, 49(2), p 726-739CrossRefGoogle Scholar
  25. 25.
    C. Berndt and E.J. Larernia, Thermal Spray Processing of Nanoscale Materials—A Conference Report with Extended Abstract, J. Therm. Spray Technol., 1998, 7(3), p 411-440CrossRefGoogle Scholar
  26. 26.
    Y. Zhu, M. Huang, J. Huang, and C. Ding, Vacuum-Plasma Sprayed Nanostructured Titanium Oxide Films, J. Therm. Spray Technol., 1999, 8(2), p 219-222CrossRefGoogle Scholar
  27. 27.
    Y. Yuan, L. Li, C. Wang, and Y.Y. Zhu, Study of the Effects of Hydrogen on the Pitting Processes of X70 Carbon Steel with SECM, Electrochem. Commun., 2010, 12(1), p 1804-1807CrossRefGoogle Scholar
  28. 28.
    C.F. Dong, A.Q. Fu, X.G. Li, and Y.F. Cheng, Localized EIS Characterization of Corrosion of Steel at Coating Defect Under Cathodic Protection, Electrochim. Acta, 2008, 54(1), p 628-633CrossRefGoogle Scholar
  29. 29.
    L. Wang and Y.S. Chao, Corrosion Behavior of Fe41Co7Cr15Mo14C15B6Y2 Bulk Metallic Glass in NaCl Solution, Mater. Lett., 2012, 69, p 76-78CrossRefGoogle Scholar
  30. 30.
    M. Mayuzumi, J. Ohta, and K. Kako, Corrosion Behavior of High-Purity Fe-Cr-Ni Alloys in the Transpassive Condition, Corrosion, 2000, 56, p 70-79CrossRefGoogle Scholar

Copyright information

© ASM International 2016

Authors and Affiliations

  • Xi Shi
    • 1
  • Mingyong Shu
    • 1
  • Qingdong Zhong
    • 1
  • Junliang Zhang
    • 1
  • Qiongyu Zhou
    • 2
  • Quoc Binh Bui
    • 3
  1. 1.State Key Laboratory of Advanced Special SteelsShanghai UniversityShanghaiChina
  2. 2.School of Materials Science and EngineeringJiangxi University of Science and TechnologyGanzhouChina
  3. 3.Vietnam Maritime UniversityHaiphongVietnam

Personalised recommendations