Thermoelectric Device Fabrication Using Thermal Spray and Laser Micromachining
- 1.4k Downloads
- 1 Citations
Abstract
Thermoelectric generators (TEGs) are solid-state devices that convert heat directly into electricity. They are used in many engineering applications such as vehicle and industrial waste-heat recovery systems to provide electrical power, improve operating efficiency and reduce costs. State-of-art TEG manufacturing is based on prefabricated materials and a labor-intensive process involving soldering, epoxy bonding, and mechanical clamping for assembly. This reduces their durability and raises costs. Additive manufacturing technologies, such as thermal spray, present opportunities to overcome these challenges. In this work, TEGs have been fabricated for the first time using thermal spray technology and laser micromachining. The TEGs are fabricated directly onto engineering component surfaces. First, current fabrication techniques of TEGs are presented. Next, the steps required to fabricate a thermal spray-based TEG module, including the formation of the metallic interconnect layers and the thermoelectric legs are presented. A technique for bridging the air gap between two adjacent thermoelectric elements for the top layer using a sacrificial filler material is also demonstrated. A flat 50.8 mm × 50.8 mm TEG module is fabricated using this method and its performance is experimentally characterized and found to be in agreement with expected values of open-circuit voltage based on the materials used.
Keywords
additive manufacturing (AM) laser micromachining thermal spray thermoelectric generators (TEGs) thermoelectric power generation waste-heat energy harvestingNotes
Acknowledgments
The authors gratefully acknowledge support for this work from the New York State Energy Research and Development Authority (NYSERDA) under Agreement # 25222 and the National Science Foundation under Grant CBET #1048744.
References
- 1.J. Yang and T. Caillat, Thermoelectric Materials for Space and Automotive Power Generation, MRS Bull., 2006, 31(03), p 224-229CrossRefGoogle Scholar
- 2.J. Yang and F. Stabler, Automotive Applications of Thermoelectric Materials, J. Electron. Mater., 2009, 38(7), p 1245-1251CrossRefGoogle Scholar
- 3.M.A. Karri, E.F. Thacher, and B.T. Helenbrook, Exhaust Energy Conversion by Thermoelectric Generator: Two Case Studies, Energy Convers. Manag., 2011, 52(3), p 1596-1611CrossRefGoogle Scholar
- 4.W.S. Wang, W. Magnin, N. Wang, M. Hayes, B. O’Flynn, and C. O’Mathuna, Bulk Material Based Thermoelectric Energy Harvesting for Wireless Sensor Applications, J. Phys: Conf. Ser., 2011, 307(1), p 012030Google Scholar
- 5.J. Dilhac, R. Monthéard, M. Bafleur, V. Boitier, P. Durand-Estèbe, and P. Tounsi, Implementation of Thermoelectric Generators in Airliners for Powering Battery-Free Wireless Sensor Networks, J. Electron. Mater., 2014, 43(6), p 2444-2451CrossRefGoogle Scholar
- 6.M. Tewolde, C.C. Lin, H. Tao, H. Chen, G. Fu, D. Liu, T. Zhang, D. Benjamin, L. Zuo, D. Hwang, and J. Longtin, Sensors for Small Modular Reactors Powered by Thermoelectric Generators, ASME 2014 Small Modular Reactors Symposium, American Society of Mechanical Engineers, 2014Google Scholar
- 7.A. Schmitz, C. Stiewe, and E. Muller, Preparation of Ring-Shaped Thermoelectric Legs from PbTe Powders for Tubular Thermoelectric Modules, J. Electron. Mater., 2013, 42(7), p 1702-1706CrossRefGoogle Scholar
- 8.S. Kumar, S.D. Heister, X.F. Xu, J.R. Salvador, and G.P. Meisner, Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part II: Parametric Evaluation and Topological Studies, J. Electron. Mater., 2013, 42(6), p 944-955CrossRefGoogle Scholar
- 9.D. Crane, J. LaGrandeur, V. Jovovic, M. Ranalli, M. Adldinger, E. Poliquin, J. Dean, D. Kossakovski, B. Mazar, and C. Maranville, TEG On-Vehicle Performance and Model Validation and What It Means for Further TEG Development, J. Electron. Mater., 2013, 42(7), p 1582-1591CrossRefGoogle Scholar
- 10.L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, Wiley, Chichester, 2008CrossRefGoogle Scholar
- 11.H. Herman, S. Sampath, and R. McCune, Thermal Spray: Current Status and Future Trends, MRS Bull., 2000, 25(07), p 17-25CrossRefGoogle Scholar
- 12.S. Sampath, Thermal Spray Applications in Electronics and Sensors: Past, Present, and Future, Journal of Thermal Spray Technology, 2010, 19(5), p 921-949CrossRefGoogle Scholar
- 13.M. Gardon, O. Monereo, S. Dosta, G. Vescio, A. Cirera, and J.M. Guilemany, New Procedures for Building-Up the Active Layer of Gas Sensors on Flexible Polymers, Surface & Coatings Technology, 2013, 235, p 848-852Google Scholar
- 14.H. Ronkainen, U. Kanerva, T. Varis, K. Ruusuvuori, E. Turunen, J. Perantie, J. Putaala, J. Juuti, and H. Jantunen, Materials for Electronics by Thermal Spraying, Physical and Numerical Simulation of Materials Processing Vii, L.P. Karjalainen, D.A. Porter and S.A. Jarvenpaa, Eds., 2013, p 451-456Google Scholar
- 15.J.R. Davis, Handbook of Thermal Spray Technology, ASM International, Materials Park, 2004Google Scholar
- 16.D.M. Rowe, Thermoelectrics Handbook: Macro to Nano, CRC Press, Boca Raton, 2005CrossRefGoogle Scholar
- 17.B. Sherman, R.R. Heikes, and J.R.W. Ure, Calculation of Efficiency of Thermoelectric Devices, J. Appl. Phys., 1960, 31(1), p 1-16CrossRefGoogle Scholar
- 18.T. Hendricks, N. Karri, T. Hogan, and C. Cauchy, New Perspectives in Thermoelectric Energy Recovery System Design Optimization, J. Electron. Mater., 2013, 42(7), p 1725-1736 (in English)CrossRefGoogle Scholar
- 19.K. Kato, Y. Hatasako, M. Kashiwagi, H. Hagino, C. Adachi, and K. Miyazaki, Fabrication of a Flexible Bismuth Telluride Power Generation Module Using Microporous Polyimide Films as Substrates, J. Electron. Mater., 2014, 43(6), p 1733-1739CrossRefGoogle Scholar
- 20.L. Bell, Flexible thermoelectric circuit, Google Patents, 2003Google Scholar
- 21.R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Thin-Film Thermoelectric Devices with High Room-Temperature Figures of Merit, Nature, 2001, 413(6856), p 597-602CrossRefGoogle Scholar
- 22.S. LeBlanc, Thermoelectric Generators: Linking Material Properties and Systems Engineering for Waste Heat Recovery Applications, Sustainable Materials and Technologies, 2014, 1-2, p 26-35CrossRefGoogle Scholar
- 23.M. Yahatz and J. Harper, Fabrication of Thermoelectric Modules and Solder for Such Fabrication, Google Patents, 1998Google Scholar
- 24.R. Joachim and W. Heinz, Thermoelectric Couple with Soft Solder Electrically Connecting Semi-conductors and Method of Making Same, Google Patents, 1969Google Scholar
- 25.A.G. Gillen and B. Cantor, Photocalorimetric Cooling Rate Measurements on a Ni-5 wt% A1 Alloy Rapidly Solidified by Melt Spinning, Acta Metall., 1985, 33(10), p 1813-1825CrossRefGoogle Scholar
- 26.Q. Li, Z. Lin, and J. Zhou, Thermoelectric Materials with Potential High Power Factors for Electricity Generation, J. Electron. Mater., 2009, 38(7), p 1268-1272CrossRefGoogle Scholar
- 27.G. Fu, L. Zuo, J. Longtin, C. Nie, and R. Gambino, Thermoelectric Properties of Magnesium Silicide Fabricated Using Vacuum Plasma Thermal Spray, J. Appl. Phys., 2013, 114(14), p 6CrossRefGoogle Scholar
- 28.G. Fu, L. Zuo, J. Longtin, C. Nie, Y. Chen, M. Tewolde, and S. Sampath, Thermoelectric Properties of Magnesium Silicide Deposited by Use of an Atmospheric Plasma Thermal Spray, J. Electron. Mater., 2014, 43(7), p 2723-2730CrossRefGoogle Scholar
- 29.M. Fukumoto, M. Itoh, Y. Tanaka, H. Yakabe, and K. Kikuchi, Preparation of Beta-Fesi2 Thermoelectric Coatings by Plasma Spraying of Mechanically-Alloyed Powders, J. Jpn. Inst. Metals, 1998, 62(5), p 449-456 (in Japanese)Google Scholar
- 30.Y. Tanaka, Y. Tokimoto, and M. Fukumoto, Fabrication and Improvement of Plasma Sprayed Si-Ge Thermoelectric Coating, J. Jpn. Inst. Metals, 1999, 63(8), p 1029-1035 (in Japanese)Google Scholar
- 31.Narendra B. Dahotre and S.P. Harimkar, Laser Fabrication and Machining of Materials, Springer, Berlin, 2008Google Scholar
- 32.D. Bäuerle, Laser Processing and Chemistry, Springer, Berlin, 2011CrossRefGoogle Scholar
- 33.R.S. Figliola and D.E. Beasley, Theory and Design for Mechanical Measurements, 5th ed., Wiley, Hoboken, 2015Google Scholar
- 34.D.M. Rowe and G. Min, Design Theory of Thermoelectric Modules for Electrical Power Generation, IEE Proceedings—Science, Measurement and Technology, 1996, p. 351-356Google Scholar
- 35.T. Clyne and S. Gill, Residual Stresses in Thermal Spray Coatings and Their Effect on Interfacial Adhesion: A Review of Recent Work, J. Therm. Spray Technol., 1996, 5(4), p 401-418CrossRefGoogle Scholar
- 36.M. Tewolde, D. Liu, D. Hwang, and J. Longtin, Laser Processing of Thermal Sprayed Coatings for Thermoelectric Generators, ASME 2013 Heat Transfer Summer Conference, ASME, 2013Google Scholar
- 37.J.R. Davis, ASM Specialty Handbook—Copper and Copper Alloys, ASM International, Materials Park, 2001Google Scholar
- 38.Y. Itoh, S. Suyama, and H. Fukanuma, Thermal and Electrical Properties of Copper Coatings Produced by Cold Spraying, J Soc Mater Sci Jpn, 2010, 59(2), p 143-148CrossRefGoogle Scholar
- 39.T. Tong, J. Li, Q. Chen, J.P. Longtin, S. Tankiewicz, and S. Sampath, Ultrafast Laser Micromachining of Thermal Sprayed Coatings for Microheaters: Design, Fabrication and Characterization, Sensors and Actuators A, 2004, 114(1), p 102-111CrossRefGoogle Scholar
- 40.M. Scagliotti, F. Parmigiani, G. Chiodelli, A. Magistris, G. Samoggia, and G. Lanzi, Plasma-Sprayed Zirconia Electrolytes, Solid State Ionics, 1988, 28-30(Part 2), p 1766-1769CrossRefGoogle Scholar
- 41.H. Guo, S. Kuroda, and H. Murakami, Microstructures and Properties of Plasma-Sprayed Segmented Thermal Barrier Coatings, J. Am. Ceram. Soc., 2006, 89(4), p 1432-1439CrossRefGoogle Scholar
- 42.R. Brandt, L. Pawlowski, G. Neuer, and P. Fauchais, Specific heat and thermal conductivity of plasma stabilized yttria-stabilized zirconia and NiAl, NiCrAl, NiCrAlY, NiCoCrAlY coatings, High Temp. High Press, 1986, 18, p 65-67Google Scholar