Skip to main content
Log in

Thermal Spray Coatings for Blast Furnace Tuyere Application

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The components in an integrated steel plant are invariably exposed to harsh working environments involving exposure to high temperatures, corrosive gases, and erosion/wear conditions. One such critical component in the blast furnace is the tuyere, which is prone to thermal damage by splashing of molten metal/slag, erosive damage by falling burden material, and corrosion from the ensuing gases. All the above, collectively or independently, accelerate tuyere failure, which presents a potential explosion hazard in a blast furnace. Recently, thermal spray coatings have emerged as an effective solution to mitigate such severe operational challenges. In the present work, five different coatings deposited using detonation spray and air plasma spray techniques were comprehensively characterized. Performance evaluation involving thermal cycling, hot corrosion, and erosion tests was also carried out. Based on the studies, a coating system was suggested for possible tuyere applications and found to yield substantial improvement in service life during actual field trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C. Copeland and S. Street, A Practical Engineering Approach to Improving the Reliability of Blast Furnace Tuyeres, Iron Steel Technol., 2013, p 47-62

  2. S. Matthews and B. James, Review of Thermal Spray Coating Applications in the Steel Industry: Part-1 Hardware in Steel Making to the Continuous Annealing Process, J. Therm. Spray Technol., 2010, 19(6), p 1267-1276

    Article  Google Scholar 

  3. J. Hartman, Notes on Tuyeres in the Iron Blast Furnace, Trans. Am. Inst. Min. Eng., 1898, 28, p 666-673

    Google Scholar 

  4. T. Shellhammer and R. Walsh, High Conductivity Copper in the Blast Furnace, AISTech Conference Proceedings, 2010, I, p 437-452

  5. Anon., The Explosion of No. 5 Blast Furnace, Corus UK Ltd., Port Talbot, United Kingdom, Health and Safety Executive Report, Uk, 2001, p 47

  6. Y. Zhao, M. Atkinson, H. Crosman, C. Tetrault, D. Roldan, and C. Zhou, Investigation of Tuyere Nose Failures at U. S. Steel—Great Lakes Works B2 Blast Furnace, AISTech Conference Proceedings, 2005, I, p 491-496

  7. H. Nakahira, Blast-Furnace Tuyere Having Excellent Thermal Shock Resistance and High Durability, US3977660 A, 1976

  8. H. Watanabe, S. Shoji, A. Sato, and T. Oka, Blast-Furnace Tuyere, US4189130 A, 1980

  9. H. Fukubayashi, Metal-Zirconia Composite Coating, International Patent, Publication Number WO 02/075004 A1. Praxair S.T. Technology Ltd., 2002

  10. D. Yang, Y. Guan, Y. Zhang, J. Li, J. Hu, and W. Li, Application of Ceramic Coat Synthesized by In-Situ Combustion to BF Tuyere, J. Iron Steel Res. Int., 2007, 14(2), p 70-72

    Article  Google Scholar 

  11. Y. Ohmae, Surface Coated Blast Furnace Tuyere Made of Copper or Copper Alloy and Method of Surface Coating the Same, US4139673, 1979

  12. H. Yamaoka, M. Kawasaki, H. Kawanami, T. Shiino, and J. Yamashita, Tuyers for a Blast Furnace, US4043542, 1977

  13. J. Song, T. Wang, J. Yuan, L. Zhang, and X. Tan, Tuyeres of Blast Furnace Surface Recombination Coating and Method for Preparing the Same, Publication Number CN101492749 (A). Baoshan Iron and Steel (CN), 2009

  14. G. Sundararajan, D. Srinivasa Rao, G. Sivakumar, and S.V. Joshi, in Detonation Spray Coatings, ed. by J. Wang, W. Chung. Encyclopedia of Tribology, 1st ed. (Springer, US, 2013), p 736-742

  15. E. Withey, C. Peorak, R. Trice, G. Dickinson, and T. Taylor, Design of 7 wt% Y2O3-ZrO2/Mullite Plasma Sprayed Composite Coatings for Increased Creep Resistance, J. Eur. Ceram. Soc., 2007, 27, p 4675-4683

    Article  Google Scholar 

  16. M.M. Hossen, F.U.Z. Chowdhury, M.A. Gafur, A.K.M. Abdul Hakim, and S. Nasrin, Investigation of Mechanical Properties of Al2O3-20 wt % ZrO2 Composites as a Function of Sintering Temperature, Eur. Sci. J., 2014, 10(9), p 399-411

    Google Scholar 

  17. H. Tahara, M. Moriyama, and K. Fujiuchi, Ceramic Spraying Using Electromagnetically Accelerated Plasma, Proceedings of International Thermal Spray Conference, Osaka, Japan, 2004, p 612-618

  18. N.L. Parthasarathi and M. Duraiselvam, Improvement of High Temperature Wear Resistance of AISI, 316 ASS Through NiCrBSiCFe Plasma Spray Coating, J. Min. Mater. Charact. Eng., 2010, 9(7), p 653-670

    Google Scholar 

  19. M.W. Richert, M. Książek, P. Pałka, S. Wawrzyniak, R. Grzelka, and K. Płońska-Niżnik, Microstructure Characterization of Chromium Carbide Coatings Deposited by Thermal Spray Processes, J. Achiev. Mater. Manufac. Eng., 2012, 55(1), p 108-112

    Google Scholar 

  20. L. Pawlowski, Properties of Coatings, The Science and Engineering of Coatings, 2nd ed. (John Wiley & Sons Ltd, 2008), p 399-400

  21. A.A. Abdel-Samad, A.M.M. El-Bahloul, E. Lugscheider, and S.A. Rassoul, A Comparative Study on Thermally Sprayed Alumina Based Ceramic Coatings, J. Mater. Sci., 2000, 35(12), p 3127-3130

    Article  Google Scholar 

  22. N. Margadant, S. Siegmann, J. Patscheider, T. Keller, W. Wagner, J. Ilavsky, J. Pisacka, G. Barbezat, P. Fiala, and T. Pirling, Microstructure—Property Relationships and Cross-Property-Correlations of Thermal Sprayed Ni-Alloy Coatings, Proceedings of Thermal Spray 2001—New Surfaces for New Millennium, Singapore, 2001, p 643-652

  23. G. Sundararajan, D. Sen, and G. Sivakumar, The Tribological Behavior of Detonation Sprayed Coatings: The Importance of Coating Process Parameters, Wear, 2005, 258(1), p 377-391

    Article  Google Scholar 

  24. W. Tie-Gang, Z. Sheng-Sheng, H. Wei-Gang, L. Jia-Bao, G. Jun, and S. Chao, Estimation of Residual Stress and Its Effects on the Mechanical Properties of Detonation Gun Sprayed WC-Co Coatings, Mater. Sci. Eng. A, 2010, 527(3), p 454-461

  25. B. Rajasekaran, S. Sundara Raman Ganesh, V. Joshi, and G. Sundarajan, Performance of Plasma Sprayed and Detonation Gun Sprayed Cu-Ni-ln Coatings on Ti-6Al-4V Under Plain Fatigue and Fretting Fatigue Loading, Mater. Sci. Eng. A, 2008, 479(1-2), p 83-92

    Article  Google Scholar 

  26. J.K.N. Murthy and B. Venkataraman, Abrasive Wear Behavior of WC-CoCr and Cr3C2-20(NiCr) Deposited by HVOF and Detonation Spray Processes, Surf. Coat. Technol., 2006, 200(8), p 2642-2652

    Article  Google Scholar 

  27. G. Sivakumar, L. Ramakrishna, V. Jain, D. Srinivasa Rao, and G. Sundararajan, The Influence of the Process Parameters on the Properties of Detonation Sprayed WC-12Co Coatings, Proceedings of International Thermal Spray Conference. ASM Materials, 2001, p 1031-1038

  28. D. Toma, W. Brandl, and G. Marginean, Wear and Corrosion Behaviour of Thermally Sprayed Cermet Coatings, Surf. Coat. Technol., 2001, 138(2-3), p 149-158

    Article  Google Scholar 

  29. N.J. Claussen, Fracture Toughness of Al2O3 with an Unstable ZrO2 Dispersed Second Phase, J. Am. Ceram. Soc., 1976, 61, p 49-51

    Article  Google Scholar 

  30. J. Wang and R. Stevens, Review Zirconia-Toughened Alumina (ZTA) Ceramics, J. Mater. Sci., 1989, 24, p 3421-3440

    Article  Google Scholar 

  31. J.R. Davis, Ed., Handbook of Thermal Spray Technology (ASM International, Materials Park, OH, 2004), p 158

  32. W.D. Callister Jr., Structure and Properties of Ceramics, Materials Science and Engineering: An Introduction, 6th ed. (John Wiley & Sons Ltd, 2009), p 399–400

  33. Lidija. Ćurković, Ivan. Kumić, and Krešimir. Grilec, Solid Particle Erosion Behaviour of High Purity Alumina Ceramics, Ceram. Int., 2011, 37(1), p 29-35

    Article  Google Scholar 

  34. W. Gao and Z. Li, Eds., Developments in High-Temperature Corrosion and Protection of Materials (Woodhead Publishing-CRC press, Cornwall, England), p 499

  35. C. Ramachandra, K.N. Lee, and S.N. Tewari, Durability of TBCs with a Surface Environmental Barrier Layer Under Thermal Cycling in Air and in Molten Salt, Surf. Coat. Technol., 2003, 172, p 150-157

    Article  Google Scholar 

  36. A. Keyvani, M. Saremi, and M.H. Sohi, Microstructural Stability of Zirconia-Alumina Composite Coatings During Hot Corrosion Test at 1050°C, J. Alloys Compd., 2009, 506(1), p 103-108

    Article  Google Scholar 

  37. S. Sen, O. Ozdemir, A.S. Demirkıran, and U. Sen, Oxidation Kinetics of Chromium Carbide Coating Produced on AISI, 1040 Steel by Thermo-Reactive Deposition Method during High Temperature in Air, Adv. Mater. Res., 2012, 445, p 649-654

    Google Scholar 

  38. K.N. Lee, R.A. Miller, and N.S. Jacobson, New Generation of Plasma-Sprayed Mullite Coatings on Silicon Carbide, J. Am. Ceram. Soc., 1995, 78(3), p 705-710

    Article  Google Scholar 

  39. S. Kamal, R. Jayaganthan, and S. Prakash, High Temperature Oxidation Studies of Detonation-Gun-Sprayed Cr3C2-NiCr Coating on Fe- and Ni-Based Superalloys in Air Under Cyclic Condition at 900°C, J. Alloys Compd., 2009, 472, p 378-389

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pathak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathak, A., Sivakumar, G., Prusty, D. et al. Thermal Spray Coatings for Blast Furnace Tuyere Application. J Therm Spray Tech 24, 1429–1440 (2015). https://doi.org/10.1007/s11666-015-0350-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-015-0350-z

Keywords

Navigation