Skip to main content
Log in

Substrate Melting and Re-solidification During Impact of High-Melting Point Droplet Material

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In this paper, impact, spreading, and solidification of molten droplet on a dissimilar substrate along with substrate melting and its re-solidification are investigated numerically. Volume of fluid surface tracking method coupled with the solidification model within a one-domain continuum formulation is used to model the transient flow during the droplet impact, its subsequent spreading, and solidification. Evolution of melting front in the substrate is modeled by solving the governing equations for solidification in the substrate, too. Simulations are performed for the impact of a heated droplet on a substrate. The model predicts substrate melting, which can give better insight of bonding between the coating material and substrate, where droplet and substrate are of different materials. It is observed that melting in the substrate in the present case starts soon after the impact of the heated droplet. The depth and the width of the melting front in the substrate increase with the time and after reaching a maximum they start to decrease because of start of re-solidification from the melted edge. In the central part of the splat droplet solidifies, while the substrate remains melted which can enhance the coating strength and its bonding with the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

c p :

Specific heat capacity (J/kg/K)

C :

Constant related to Darcy source term (kg/m3/s)

D 0 :

Initial droplet diameter (m)

f l :

Weight fraction of liquid

f s :

Weight fraction of solid

F :

Volume of fluid function

F vol :

Continuum surface tension force (N/m3)

\(\vec{g}\) :

Acceleration due to gravity vector (m/s2)

K :

Thermal conductivity (W/m/K)

L :

Latent heat of fusion (J/kg)

t :

Time (s)

T :

Temperature (K)

U 0 :

Droplet’s initial impact velocity (m/s)

\(\vec{u}\) :

Continuum velocity vector (m/s)

μ:

Dynamic viscosity (kg/m/s)

ρ:

Density (kg/m3)

σ:

Surface tension (N/m)

d:

Droplet

sub:

Substrate

air:

Air

0:

Initial

s:

Solid

solidus:

Solidus temperature

l:

Liquid

liquidus:

Liquidus temperature

l,d:

Liquid droplet

s,d:

Solid droplet

l,sub:

Liquid phase in substrate

s,sub:

Solid substrate

References

  1. S. Kitahara and A. Hasui, A Study of the Bonding Mechanism of Sprayed Coatings, J. Vac. Sci. Technol., 1974, 11, p 747-752

    Article  Google Scholar 

  2. R. McPherson, The Relationship Between the Mechanism of Formation, Microstructure and Properties of Plasma Sprayed Coatings, Thin Solid Films, 1981, 83, p 297-310

    Article  Google Scholar 

  3. S. Dallaire, Influence of Temperature on the Bonding Mechanism of Plasma-Sprayed Coatings, Thin Solid Films, 1982, 95, p 237-244

    Article  Google Scholar 

  4. H.D. Steffens, B. Wielage, and J. Drozak, Interface Phenomena and Bonding Mechanism of Thermally-Sprayed Metal and Ceramic Composites, Surf. Coat. Technol., 1991, 45, p 299-308

    Article  Google Scholar 

  5. C.H. Amon, K.S. Schmaltz, R. Merz, and F.B. Prinz, Numerical and Experimental Investigation of Interface Bonding Via Substrate Remelting of an Impinging Molten Metal Droplet, J. Heat Transf., 1996, 118, p 164-172

    Article  Google Scholar 

  6. L.J. Zarzalejo, K.S. Schmaltz, and C.H. Amon, Molten Droplet Solidification and Substrate Remelting in Microcasting—Part I: Numerical Modeling and Experimental Verification, Heat Mass Transf., 1999, 34, p 477-485

    Article  Google Scholar 

  7. K.S. Schmaltz, L.J. Zarzalejo, and C.H. Amon, Molten Droplet Solidification and Substrate Remelting in Microcasting—Part II: Parametric Study and Effect of Dissimilar Materials, Heat Mass Transf., 1999, 35, p 17-23

    Article  Google Scholar 

  8. S.-P. Wang, G.-X. Wang, and E.F. Matthys, Melting and Resolidification of a Substrate in Contact with a Molten Metal: Operational Maps, Int. J. Heat Mass Transf., 1998, 41, p 1177-1188

    Article  Google Scholar 

  9. D. Attinger and D. Poulikakos, Melting and Resolidification of a Substrate Caused by Molten Microdroplet Impact, J. Heat Transf., 2001, 123, p 1110-1122

    Article  Google Scholar 

  10. H. Zhang, X.X. Wang, L.L. Zheng, and X.X. Jiang, Studies of Splat Morphology and Rapid Solidification During Thermal Spraying, Int. J. Heat Mass Transf., 2001, 44, p 4579-4592

    Article  Google Scholar 

  11. L. Li, X.Y. Wang, G. Wei, A. Vaida, H. Zhang, and S. Sampath, Substrate Melting During Thermal Spray Splat Quenching, Thin Solid Films, 2004, 468, p 113-119

    Article  Google Scholar 

  12. F.J. Hong and H.-H. Qiu, Modeling of Substrate Remelting, Flow, and Resolidification in Microcasting, Numer. Heat Transf. A, 2005, 48, p 987-1008

    Article  Google Scholar 

  13. W. Wang, R.A. Lambert, and R.H. Rangel, Parametric Study of Multi-splat Solidification/Remelting Including Contact Resistance Effects, Int. J. Heat Mass Transf., 2008, 51, p 4811-4819

    Article  Google Scholar 

  14. C.J. Li, C.X. Li, G.J. Yang, and Y.Y. Wang, Examination of Substrate Surface Melting-Induced Splashing During Splat Formation in Plasma Spraying, J. Therm. Spray Technol., 2006, 15(4), p 717-724

    Article  Google Scholar 

  15. S. Kamnis and S. Gu, Numerical Modelling of Droplet Impingement, J. Phys. D, 2005, 38, p 3664-3673

    Article  Google Scholar 

  16. A. Kumar, S. Gu, H. Tabbara, and S. Kamnis, Study of Impingement of Hollow ZrO2 Droplets onto a Substrate, Surf. Coat. Technol., 2012, 220, p 164-169

    Article  Google Scholar 

  17. A. Kumar, S. Gu, and S. Kamnis, Simulation of Impact of a Hollow Droplet on a Flat Surface, Appl. Phys. A, 2012, 109, p 101-109

    Article  Google Scholar 

  18. A.D. Brent, V.R. Voller, and K.J. Reid, The Enthalpy-Porosity Technique for Modelling Convection Diffusion Phase Change: Application to the Melting of a Pure Metal, Numer. Heat Transf., 1988, 13, p 297-318

    Google Scholar 

  19. J.U. Brackbill, D.B. Kothe, and C. Zemach, A Continuum Method for Modeling Surface Tension, J. Comput. Phys., 1992, 100, p 335-354

    Article  Google Scholar 

  20. N. Pathak, A. Kumar, A. Yadav, and P. Dutta, Effects of Mould Filling on Evolution of the Solid-Liquid Interface During Solidification, Appl. Therm. Eng., 2009, 29, p 3669-3678

    Article  Google Scholar 

  21. N.Z. Mehdizadeh, M. Lamontagne, C. Moreau, S. Chandra, and J. Mostaghimi, Photographing Impact of Molten Molybdenum Particles in a Plasma Spray, J. Therm. Spray Technol., 2005, 14(3), p 354-361

    Article  Google Scholar 

  22. M. Pasandideh-Fard, V. Pershin, S. Chandra, and J. Mostaghimi, Splat shapes in a Thermal Spray Coating Process: Simulations and Experiments, J. Therm. Spray Technol., 2001, 11, p 206-217

    Article  Google Scholar 

  23. J. Mostaghimi, Modelling Droplet Impact in Plasma Spray Processes, Pure Appl. Chem., 1998, 70(6), p 1209-1215

    Article  Google Scholar 

  24. M. Pasandideh-Fard, M. Qiao, S. Chandra, and J. Mostaghimi, Capillary Effects During Droplet Impact on a Solid Surface, Phys. Fluids, 1996, 8(3), p 650-659

    Article  Google Scholar 

  25. M. Xue, Y. Heichal, and S. Chandra, Modeling the Impact of a Molten Metal Droplet on a Solid Surface Using Variable Interfacial Thermal Contact Resistance, J. Mater. Sci., 2007, 42, p 9-18

    Article  Google Scholar 

  26. V. Mehdi-Nejad, J. Mostaghimi, and S. Chandra, Air Bubble Entrapment Under an Impacting Droplet, Phys. Fluids, 2003, 15, p 173-183

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Kumar.

Additional information

This article is an invited paper selected from presentations at the 6th Asian Thermal Spray Conference (ATSC 2014) and has been expanded from the original presentation. ATSC 2014 was held in Hyderabad, India, November 24-26, 2014, and was organized by the International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI) and the Asian Thermal Spray Society.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, R.K., Kumar, A. Substrate Melting and Re-solidification During Impact of High-Melting Point Droplet Material. J Therm Spray Tech 24, 1368–1376 (2015). https://doi.org/10.1007/s11666-015-0326-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-015-0326-z

Keywords

Navigation