Journal of Thermal Spray Technology

, Volume 24, Issue 8, pp 1549–1565 | Cite as

Finite Element Analysis and Failure Mode Characterization of Pyramidal Fin Arrays Produced by Masked Cold Gas Dynamic Spray

  • Yannick Cormier
  • Philippe Dupuis
  • Bertrand Jodoin
  • Abbas Ghaei
Peer Reviewed

Abstract

This work evaluates the shear strength of pyramidal fin arrays made from various feedstock materials (cylindrical aluminum, spherical nickel, and cylindrical stainless steel 304 powders) deposited on an Al6061-T6 substrate. Higher shear strength was measured for the nickel fin array followed by the stainless steel 304 and the aluminum arrays. Different failure modes were observed by inspecting the fracture surfaces under Scanning Electron Microscope. Deposition between the cold sprayed nickel and stainless fins was detected whereas dimples were noticed on the substrate between the fins when aluminum is used as the feedstock material. A numerical simulation of normal and angled impacts using the high strain rate Preston-Tonks-Wallace model was carried out in order to have a better understanding of the experimental results. The equivalent plastic strain (PEEQ) obtained from the finite element analysis at normal impact correlates with the different shear strengths measured experimentally. Furthermore, even if a higher PEEQ was observed for angled impacts compared to its normal collision counterpart, it is suggested that the particles may not bond because of the rotational restitution momentum caused by the tangential friction generated during angled impacts. This rotational restitution momentum was not detected for particle impacts normal to the substrate surface.

Keywords

additive manufacturing cold spray finite element analysis pin fin array shear strength 

References

  1. 1.
    H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51, p 4379-4394CrossRefGoogle Scholar
  2. 2.
    M. Grujicic, J.R. Saylor, D.E. Beasley, W.S. DeRosset, and D. Helfritch, Computational Analysis of the Interfacial Bonding between Feed-Powder Particles and the Substrate in the Cold-Gas Dynamic-Spray Process, Appl. Surf. Sci., 2003, 219, p 211-227CrossRefGoogle Scholar
  3. 3.
    W.-Y. Li, H. Liao, C.-J. Li, H.-S. Bang, and C. Coddet, Numerical Simulation of Deformation Behavior of Al Particles Impacting on Al Substrate and Effect of Surface Oxide Films on Interfacial Bonding in Cold Spraying, Appl. Surf. Sci., 2006, 253, p 5084-5091CrossRefGoogle Scholar
  4. 4.
    T. Hussain, D.G. McCartney, P.H. Shipway, and D. Zhang, Bonding Mechanisms in Cold Spraying: The Contributions of Metallurgical and Mechanical Components, J. Therm. Spray Technol., 2009, 18(3), p 364-379CrossRefGoogle Scholar
  5. 5.
    D. Zhang, P.H. Shipway, and D.G. McCartney, Cold Gas Dynamic Spraying of Aluminum: The Role of Substrate Characteristics in Deposit Formation, J. Therm. Spray Technol., 2005, 14(1), p 109-116CrossRefGoogle Scholar
  6. 6.
    M. Grujicic, C.L. Zhao, W.S. DeRosset, and D. Helfritch, Adiabatic Shear Instability Based Mechanism for Particles/Substrate Bonding in the Cold-Gas Dynamic-Spray Process, Mater. Des., 2004, 25, p 681-688CrossRefGoogle Scholar
  7. 7.
    G. Bae, Y. Xiong, S. Kumar, K. Kang, and C. Lee, General Aspects of Interface Bonding in Kinetic Spraying Coatings, Acta Mater., 2008, 56(17), p 4858-4868CrossRefGoogle Scholar
  8. 8.
    T. Schmidt, F. Gärtner, H. Assadi, and H. Kreye, Development of a Generalized Parameter Window for Cold Spray Depositon, Acta Mater., 2006, 54, p 729-742CrossRefGoogle Scholar
  9. 9.
    G. Bae, S. Kumar, S. Yoon, K. Kang, H. Na, H.-J. Kim, and C. Lee, Bonding Features and Associated Mechanisms in Kinetic Sprayed Titanium Coatings, Acta Mater., 2009, 57, p 5654-5666CrossRefGoogle Scholar
  10. 10.
    P.C. King, G. Bae, S.H. Zahiri, M. Jahedi, and C. Lee, An Experimental and Finite Element Study of Cold Spray Copper Impact onto Two Aluminum Substrates, J. Therm. Spray Technol., 2010, 19(3), p 620-634CrossRefGoogle Scholar
  11. 11.
    V. Lemiale, P.C. King, M. Rudman, M. Prakash, P.W. Cleary, M.Z. Jahedi, and S. Gulizia, Temperature and Strain Rate Effects in Cold Spray Investigated by Smoothed Particle Hydrodynamics, Surf. Coat. Technol., 2014, 254, p 121-130CrossRefGoogle Scholar
  12. 12.
    D. Giraud, Study of the Mechanical and Metallurgical Contributions to Coating-substrate Bonding in Cold Spray for “Aluminium/Polyamide 66” and “Titanium/Ti-6Al-4 V”, Ph.D. Thesis, Paris Institute of Technology, 2014Google Scholar
  13. 13.
    D.L. Preston, D.L. Tonks, and D.C. Wallace, Model of Plastic Deformation for Extreme Loading Conditions, J. Appl. Phys., 2003, 93(1), p 211-220CrossRefGoogle Scholar
  14. 14.
    S. Rahmati and A. Ghaei, The Use of Particle/Substrate Material Models in Simulation of Cold-Gas Dynamic-Spray Process, J. Therm. Spray Technol., 2014, 23(3), p 530-540CrossRefGoogle Scholar
  15. 15.
    C.Y. Gao and L.C. Zhang, Constitutive Modelling of Plasticity of fcc Metals Under Extremely High Strain Rates, Int. J. Plast., 2012, 32-33, p 121-133CrossRefGoogle Scholar
  16. 16.
    J.-B. Kim and H. Shin, Comparison of Plasticity Models for Tantalum and a Modification of the PTW Model for Wide Ranges of Strain, Strain Rate, and Temperature, Int. J. Impact Eng., 2009, 36(5), p 746-753CrossRefGoogle Scholar
  17. 17.
    R. Liang and A.S. Khan, A Critical Review of Experimental Results and Constitutive Models for BCC and FCC Metals Over a Wide Range of Strain Rates and Temperatures, Int. J. Plast., 1999, 15, p 963-980CrossRefGoogle Scholar
  18. 18.
    P.C. King, S.H. Zahiri, and M. Jahedi, Microstructural Refinement within a Cold Sprayed Copper Particle, Metall. Mater. Trans. A, 2009, 40(9), p 2115-2123CrossRefGoogle Scholar
  19. 19.
    Y. Cormier, P. Dupuis, B. Jodoin, and A. Corbeil, Net Shape Fins for Compact Heat Exchanger Produced by Cold Spray, J. Therm. Spray Technol., 2013, 22(7), p 1210-1221CrossRefGoogle Scholar
  20. 20.
    A. Sova, M. Doubenskaia, S. Grigoriev, A. Okunkova, and I. Smurov, Parameters of the Gas-Powder Supersonic Jet in Cold Spraying Using a Mask, J. Therm. Spray Technol., 2013, 22(4), p 551-556CrossRefGoogle Scholar
  21. 21.
    V. Champagne, D. Helfritch, E. Wienhold, and J. DeHaven, The Development of Nickel-Aluminum Reactive Material by Cold Spray Process, Army Research Laboratory Technical Report ARL-TR-5189, 2010Google Scholar
  22. 22.
    D.Y. Kim, J.J. Park, J.G. Lee, D. Kim, S.J. Tark, S. Ahn, J.H. Yun, J. Gwak, K.H. Yoon, S. Chandra, and S.S. Yoon, Cold Spray Deposition of Copper Electrodes on Silicon and Glass Substrates, J. Therm. Spray Technol., 2013, 22(7), p 1092-1102CrossRefGoogle Scholar
  23. 23.
    P. Dupuis, Y. Cormier, A. Farjam, B. Jodoin, and A. Corbeil, Performance Evaluation of Near-Net Pyramidal Shaped Fin Arrays Manufactured by Cold Spray, Int. J. Heat Mass Transf., 2014, 69, p 34-43CrossRefGoogle Scholar
  24. 24.
    Y. Cormier, P. Dupuis, A. Farjam, B. Jodoin, and A. Corbeil, Additive Manufacturing of Pyramidal Pin Fins: Height and Fin Density Effects Under Forced Convection, Int. J. Heat Mass Transf., 2014, 75, p 235-244CrossRefGoogle Scholar
  25. 25.
    Y. Cormier, P. Dupuis, B. Jodoin, and A. Corbeil, Mechanical Properties of Cold Gas Dynamic-Sprayed Near-Net-Shaped Fin Arrays, J. Therm. Spray Technol., 2015, 24(3), p 476-488CrossRefGoogle Scholar
  26. 26.
    Y. Cormier, P. Dupuis, B. Jodoin, and A. Corbeil, Pyramidal Fin Arrays Performance Using Streamwise Anisotropic Materials by Cold Spray Additive Manufacturing, J. Therm. Spray Technol., 2015, doi:10.1007/s11666-015-0267-6 Google Scholar
  27. 27.
    EN 15340, European Standard Method-Determination of Shear Load Resistance of Thermally Sprayed Coatings, 2007, p. A91Google Scholar
  28. 28.
    W.-K. Li, H. Liao, C.-J. Li, G. Li, C. Coddet, and X. Wang, On High Velocity Impact of Micro-sized Metallic Particles in Cold Spray, Appl. Surf. Sci., 2006, 253, p 2852-2862CrossRefGoogle Scholar
  29. 29.
    F.P. Incropera, D.P. DeWitt, T.L. Bergman, and A.S. Lavine, Fundamentals of Heat and Mass Transfer, 6th ed., Wiley, New York, 2006Google Scholar
  30. 30.
    P. Trahan, “Corrosion Protection of Friction Stir Welded Al 7075 Panel for use in Aerospace using Cold Gas Dynamic Spray,” M.A.Sc. Thesis, University of Ottawa, 2013Google Scholar
  31. 31.
    Dassault Systemes Simulia, ABAQUS Analysis User’s Manual, Abaqus 6.12, 2012Google Scholar
  32. 32.
    D.J. Steinberg, “Equation of State and Strength Properties of Selected Materials, Lawrence Livermore National Laboratory,” 1996Google Scholar
  33. 33.
    B. Banerjee, “An Evaluation of Plastic Flow Stress Models for the Simulation of High-Temperature and High Strain-rate Deformation of Metals, Cornell University Library,” 2005, p 1-43Google Scholar
  34. 34.
    M. Fugate, B. Williams, D. Higdon, K.M. Hanson, J. Gattiker, S. Chen, and C. Unal, Hierarchical Bayesian Analysis and the Preston-Tonks-Wallace Model, Los Alamos National Laboratory Technical Report LA-UR-05-3935, 2005Google Scholar
  35. 35.
    B. Banerjee and A.S. Bhawalkar, An Extended Mechanical Threshold Stress Plasticity Model: Modeling 6061-T6 Aluminum Alloy, J. Mech. Mater. Struct., 2008, 3(3), p 391-424CrossRefGoogle Scholar
  36. 36.
    H.N. Jarmakani, “Quasi-Isentropic and Shock Compression of FCC and BCC Metals: Effects of Grain Size and Stacking-Fault Energy,” Ph.D. Thesis, University of California, 2008Google Scholar
  37. 37.
    R.A. Austin and D.L. McDowell, Parameterization of a Rate-Dependent Model of Shock-Induced Plasticity for Copper, Nickel and Aluminum, Int. J. Plast., 2012, 32-33, p 134-154CrossRefGoogle Scholar
  38. 38.
    P.S. Follansbee, Fundamentals of Strength: Principles, Experiment, and Applications of an Internal State Variable Constitutive Formulation, 1st ed., Wiley, New York, 2014CrossRefGoogle Scholar
  39. 39.
    B. Banerjee, The Mechanical Threshold Stress Model for Various Tempers of AISI, 4340 Steel, Int. J. Solids Struct., 2007, 44, p 834-859CrossRefGoogle Scholar
  40. 40.
    S.R. Chen, M.G. Stout, U.F. Kocks, S.R. MacEwen, and A.J. Beaudoin, Constitutive Modeling of a 5182 Aluminum as a Function of Strain Rate and Temperature, Int. J. Solids Struct., 2007, 44, p 834-859CrossRefGoogle Scholar
  41. 41.
    M.L. Newman, B.J. Robinson, H. Sehitoglu, and J.A. Dantzig, Deformation, Residual Stress, and Constitutive Relations for Quenched W319 Aluminum, Metall. Mater. Trans. A, 2003, 34(7), p 1483-1491CrossRefGoogle Scholar
  42. 42.
    T.H. Van Steenkiste, J.R. Smith, and R.E. Teets, Aluminum Coatings via Kinetic Spray with Relatively Large Powder Particles, Surf. Coat. Technol., 2002, 154, p 237-252CrossRefGoogle Scholar
  43. 43.
    F. Meng, H. Aydin, S. Yue, and J. Song, The Effects of Contact Conditions on the Onset of Shear Instability in Cold-Spray, J. Therm. Spray Technol., 2015, 24(4), p 711-719CrossRefGoogle Scholar
  44. 44.
    C.-J. Li, W.-Y. Li, and H. Liao, Examination of the Critical Velocity for Deposition of Particles in Cold Spraying, J. Therm. Spray Technol., 2006, 15(2), p 212-222CrossRefGoogle Scholar
  45. 45.
    C.J. Li, H.T. Wang, Q. Zhang, G.J. Yang, W.Y. Li, and H.L. Liao, Influence of Spray Materials and Their Surface Oxidation on the Critical Velocity in Cold Spraying, J. Therm. Spray Technol., 2009, 19(1-2), p 95-101CrossRefGoogle Scholar
  46. 46.
    K. Kang, S. Yoon, Y. Ji, and C. Lee, Oxidation Dependency of Critical Velocity for Aluminum Feedstock Deposition in Kinetic Spraying Process, Mater. Sci. Eng. A, 2008, 486(1-2), p 300-307CrossRefGoogle Scholar
  47. 47.
    T. Klassen, F. Gärtner, T. Schmidt, J.O. Kliemann, K. Onizawa, K.R. Donner, H. Gutzmann, K. Binder, and H. Kreye, Basic Principles and Application Potentials of Cold Gas Spraying, Mat.-wiss. u.Werkstofftech, 2010, 41(7), p 575-584CrossRefGoogle Scholar
  48. 48.
    A.D. Kuritsyna, Relation Between Hardness and Resistance to Cold Welding [Antifriction Property] of Metals and Alloys, Met. Sci. Heat Treat., 1959, 1(8), p 29-32CrossRefGoogle Scholar
  49. 49.
    T. Schmidt, H. Assadi, F. Gärtner, H. Richter, T. Stoltenhoff, H. Kreye, and T. Klassen, From Particle Acceleration to Impact and Bonding in Cold Spraying, J. Therm. Spray Technol., 2009, 18(5-6), p 794-808CrossRefGoogle Scholar
  50. 50.
    R. Cross, Measurements of the Horizontal Coefficient of Restitution for a Superball and a Tennis Ball, Am. J. Phys., 2002, 70(5), p 482-489CrossRefGoogle Scholar
  51. 51.
    H. Brody, That’s How the Ball Bounces, Phys. Teach., 1984, 22, p 494-497CrossRefGoogle Scholar

Copyright information

© ASM International 2015

Authors and Affiliations

  • Yannick Cormier
    • 1
  • Philippe Dupuis
    • 1
  • Bertrand Jodoin
    • 1
  • Abbas Ghaei
    • 2
  1. 1.Department of Mechanical EngineeringUniversity of OttawaOttawaCanada
  2. 2.Department of Mechanical EngineeringIsfahan University of TechnologyIsfahanIran

Personalised recommendations