Journal of Thermal Spray Technology

, Volume 24, Issue 8, pp 1415–1428 | Cite as

Development of Plasma-Sprayed Molybdenum Carbide-Based Anode Layers with Various Metal Oxides for SOFC

  • N. H. FaisalEmail author
  • R. Ahmed
  • S. P. Katikaneni
  • S. Souentie
  • M. F. A. Goosen
Peer Reviewed


Air plasma-sprayed (APS) coatings provide an ability to deposit a range of novel fuel cell materials at competitive costs. This work develops three separate types of composite anodes (Mo-Mo2C/Al2O3, Mo-Mo2C/ZrO2, Mo-Mo2C/TiO2) using a combination of APS process parameters on Hastelloy®X for application in intermediate temperature proton-conducting solid oxide fuel cells. Commercially available carbide of molybdenum powder catalyst (Mo-Mo2C) and three metal oxides (Al2O3, ZrO2, TiO2) was used to prepare three separate composite feedstock powders to fabricate three different anodes. Each of the modified composition anode feedstock powders included a stoichiometric weight ratio of 0.8:0.2. The coatings were characterized by scanning electron microscopy, energy dispersive spectroscopy, x-ray diffraction, nanoindentation, and conductivity. We report herein that three optimized anode layers of thicknesses between 200 and 300 µm and porosity as high as 20% for Mo-Mo2C/Al2O3 (250-µm thick) and Mo-Mo2C/TiO2 (300 µm thick) and 17% for Mo-Mo2C/ZrO2 (220-µm thick), controllable by a selection of the APS process parameters with no addition of sacrificial pore-forming material. The nanohardness results indicate the upper layers of the coatings have higher values than the subsurface layers in coatings with some effect of the deposition on the substrate. Mo-Mo2C/ZrO2 shows high electrical conductivity.


air plasma spray (APS) anode molybdenum carbide SOFC 



This work has been supported by the project titled “Advance anode materials for direct hydrocarbon proton conducting solid oxide fuel cell (PC-SOFC) in auxiliary power unit,” funded by Saudi Aramco (Contract Number 6000074197).


  1. 1.
    Hydrogen & Fuel Cells: Review of National R&D Programs, International Energy Agency, Paris, 2004Google Scholar
  2. 2.
    S. McIntosh and R.J. Gorte, Direct Hydrocarbon Solid Oxide Fuel Cells, Chem. Rev., 2004, 104, p 4845-4865CrossRefGoogle Scholar
  3. 3.
    Z. Shao, S.M. Haile, J. Ahn, P.D. Ronney, Z. Zhan, and S.A. Barnett, A Thermally Self-Sustained Micro Solid-Oxide Fuel-Cell Stack with High Power Density, Nature, 2005, 435, p 795-798CrossRefGoogle Scholar
  4. 4.
    F. Tietz, H.P. Buchkremer, and D. Stöver, 10 Years of Materials Research for Solid Oxide Fuel Cells at Forschungszentrum Jülich, J. Electroceram., 2006, 17, p 701-707CrossRefGoogle Scholar
  5. 5.
    R. Hui, Z. Wang, O. Kesler, L. Rose, J. Jankovic, S. Yick, R. Maric, and D. Ghosh, Thermal Plasma Spraying for SOFC’s: Applications, Potential Advantages, and Challenges, J. Power Sour., 2007, 170, p 308-323CrossRefGoogle Scholar
  6. 6.
    K.C. Wincewicz and J.S. Cooper, Taxonomies of SOFC Material and Manufacturing Alternatives, J. Power Sour., 2005, 140, p 280-296CrossRefGoogle Scholar
  7. 7.
    S.M. Haile, Fuel Cell Materials and Components, Acta Mater., 2003, 51, p 5981-6000CrossRefGoogle Scholar
  8. 8.
    B.D. White, O. Kesler, and L. Rose, Air Plasma Spray Processing and Electrochemical Characterization of SOFC Composite Carthodes, J. Power Sources, 2008, 178, p 334-343CrossRefGoogle Scholar
  9. 9.
    P. Heo, K. Ito, A. Tomita, and T. Hibino, A Proton-Conducting Fuel Cell Operating with Hydrocarbon Fuel, Angew. Chem., 2008, 47, p 7841-7844CrossRefGoogle Scholar
  10. 10.
    Fuel Cells: Hydrocarbons Versus Hydrogen, Nature Asia, 2008Google Scholar
  11. 11.
    A.J. Brungs, A.P.E. York, J.B. Claridge, C.M. Alvarez, and M.L.H. Green, Dry Reforming of Methane to Synthesis Gas Over Supported Molybdenum Carbide Catalyst, Catal. Lett., 2000, 70, p 117-122CrossRefGoogle Scholar
  12. 12.
    P. Liu and J.A. Rodriguez, Catalytic Properties of Molybdenum Carbide, Nitride and Phosphide: A Theoretical Study, Catal. Lett., 2003, 91, p 247-252CrossRefGoogle Scholar
  13. 13.
    T. Hyeon, M. Fang, and K.S. Suslick, Nanostructured Molybdenum Carbide: Sonochemical Synthesis and Catalytic Properties, J. Am. Chem. Soc., 1996, 118, p 5492-5493CrossRefGoogle Scholar
  14. 14.
    E. Drozdz, The Influence of the Method of Addition of Al2O3 to 3YSZ Material on Its Thermal and Electrical Properties, J. Therm. Anal. Calorim., 2014, 118, p 1345-1353CrossRefGoogle Scholar
  15. 15.
    J. Gong, Y. Li, Z. Tang, and Z. Zhang, Enhancement of the Ionic Conductivity of Mixed Calcia/Yttria Stabilized Zirconia, Mater. Lett., 2000, 46, p 115-119CrossRefGoogle Scholar
  16. 16.
    R. Ahmed, N.H. Faisal, A.M. Paradowska, M. Fitzpatrick, and K.A. Khor, Neutron Diffraction Residual Strain Measurements in Nanostructured Hydroxyapatite Coatings for Orthopaedic Implants, J. Mech. Behav. Biomed. Mater., 2011, 4(8), p 2043-2054CrossRefGoogle Scholar
  17. 17.
    R. Ahmed, N.H. Faisal, A.M. Paradowska, and M. Fitzpatrick, Residual Strain and Fracture Response of Al2O3 Coatings Deposited Via APS and HVOF Techniques, J. Therm. Spray Technol., 2012, 21(1), p 23-40CrossRefGoogle Scholar
  18. 18.
    W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7, p 1564-1583CrossRefGoogle Scholar
  19. 19.
    C. Metcalfe, J. Harris, J. Kuhn, M. Marr, and O. Kesler, Progress in Metal-Supported Axial-Injection Plasma Sprayed Solid Oxide Fuel Cells Using Nanostructured NiO-Y0.15Zr0.85O1.925 Dry Powder Anode Feedstock, J. Therm. Spray Technol., 2013, 22(5), p 599-608CrossRefGoogle Scholar
  20. 20.
    M. Cuglietta, J. Kuhn, and O. Kesler, A Novel Hybrid Axial-Radial Atmospheric Plasma Spraying Technique for the Fabrication of Solid Oxide Fuel Cell Anodes Containing Cu Co, Ni, and Samaria-Doped Ceria, J. Therm. Spray Technol., 2013, 22(5), p 609-621CrossRefGoogle Scholar
  21. 21.
    K.S. Weil, Analysis of the Structure and Magnetic Properties of New Multicomponent Transition Metal Nitride Compounds, The Electrochemical Society’s Interface, Winter, New York, 1998, p 49-51Google Scholar
  22. 22.
    D. Soysal, J. Arnold, P. Szabo, R. Henne, and S.A. Ansar, Thermal Plasma Spraying Applied on Solid Oxide Fuel Cells, J. Therm. Spray Technol., 2013, 22(5), p 588-598CrossRefGoogle Scholar
  23. 23.
    P. Heo, M. Nagao, M. Sano, and T. Hibino, A High-Performance Mo2C-ZrO2 Anode Catalyst for Intermediate-Temperature Fuel Cells, J. Electrochem. Soc., 2007, 154, p B53-B56CrossRefGoogle Scholar
  24. 24.
    J.J. Liao, R.C. Wilcox, and R.H. Lee, Structures and Properties of the Mo-Mo2C System, Scr. Metall. Mater., 1990, 24, p 1647-1652CrossRefGoogle Scholar
  25. 25.
    S. Pirzada, T. Yadav, Integrated Thermal Process for the Continuous Synthesis of Nanoscale Powders, US Patent 5,851,507 A, 1998Google Scholar
  26. 26.
    R. Ahmed, N.H. Faisal, N.M. Al-Anazi, S. Al-Mutairi, F.-L. Toma, L.-M. Berger, A. Potthoff, Y.O. Elakwah, and M.F.A. Goosen, Structure Property Relationship of Suspension Thermally Sprayed WC-Co Nanocomposite Coatings, J. Therm. Spray Technol., 2014, 24(3), p 357-377CrossRefGoogle Scholar
  27. 27.
    L.-W. Tai and P.A. Lessing, Plasma Spraying of Porous Electrodes for a Planar Solid Oxide Fuel Cell, J. Am. Ceram. Soc., 1991, 74(3), p 501-504CrossRefGoogle Scholar

Copyright information

© ASM International 2015

Authors and Affiliations

  1. 1.School of EngineeringRobert Gordon UniversityAberdeenUK
  2. 2.College of EngineeringAlfaisal UniversityRiyadhSaudi Arabia
  3. 3.School of Engineering and Physical SciencesHeriot-Watt UniversityEdinburghUK
  4. 4.Research & Development CenterSaudi AramcoDhahranSaudi Arabia
  5. 5.Office of Research & Graduate StudiesAlfaisal UniversityRiyadhSaudi Arabia

Personalised recommendations