Advertisement

Journal of Thermal Spray Technology

, Volume 25, Issue 1–2, pp 82–93 | Cite as

Room Temperature Deformation Mechanisms of Alumina Particles Observed from In Situ Micro-compression and Atomistic Simulations

  • Pylin SarobolEmail author
  • Michael Chandross
  • Jay D. Carroll
  • William M. Mook
  • Daniel C. Bufford
  • Brad L. Boyce
  • Khalid Hattar
  • Paul G. Kotula
  • Aaron C. Hall
Peer Reviewed

Abstract

Aerosol deposition (AD) is a solid-state deposition technology that has been developed to fabricate ceramic coatings nominally at room temperature. Sub-micron ceramic particles accelerated by pressurized gas impact, deform, and consolidate on substrates under vacuum. Ceramic particle consolidation in AD coatings is highly dependent on particle deformation and bonding; these behaviors are not well understood. In this work, atomistic simulations and in situ micro-compressions in the scanning electron microscope, and the transmission electron microscope (TEM) were utilized to investigate fundamental mechanisms responsible for plastic deformation/fracture of particles under applied compression. Results showed that highly defective micron-sized alumina particles, initially containing numerous dislocations or a grain boundary, exhibited no observable shape change before fracture/fragmentation. Simulations and experimental results indicated that particles containing a grain boundary only accommodate low strain energy per unit volume before crack nucleation and propagation. In contrast, nearly defect-free, sub-micron, single crystal alumina particles exhibited plastic deformation and fracture without fragmentation. Dislocation nucleation/motion, significant plastic deformation, and shape change were observed. Simulation and TEM in situ micro-compression results indicated that nearly defect-free particles accommodate high strain energy per unit volume associated with dislocation plasticity before fracture. The identified deformation mechanisms provide insight into feedstock design for AD.

Keywords

alumina modeling nanoindentation 

Notes

Acknowledgments

B.L. Boyce, K. Hattar, and D.C. Bufford were supported by the Department of Energy (DOE) office of Basic Energy Sciences, Materials Science and Engineering. The authors acknowledge Sumitomo Chemical Co., LTD for supplying the alumina particles. We are grateful to C.B. Carter, P. Clem, D. Hirschfeld, H. Brown-Shaklee, R.D. Murphy, R. Tandon, and E.D. Reedy for valuable discussions. This work was performed, in part, at the Center for Integrated Nanotechnologies (CINT), an Office of Science User Facility operated for the U.S. DOE Office of Science. This work is supported by the Laboratory Directed Research and Development program at Sandia National Laboratories, a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Supplementary material

Supplementary material 1 (MOV 3194 kb)

Supplementary material 2 (MOV 2198 kb)

11666_2015_295_MOESM3_ESM.avi (1.6 mb)
Supplementary material 3 (AVI 1634 kb)
11666_2015_295_MOESM4_ESM.avi (726 kb)
Supplementary material 4 (AVI 725 kb)
11666_2015_295_MOESM5_ESM.mov (18.8 mb)
Supplementary material 5 (MOV 19292 kb)

References

  1. 1.
    J. Akedo and H. Ogiso, Room Temperature Impact Consolidation (RTIC) of Ceramic Fine Powder on Aerosol Deposition, Proc. of the 2nd International Conference and Exhibition on Ceramic Interconnect and Ceramic Microsystems Technologies (CICMT), 2006.Google Scholar
  2. 2.
    J. Akedo, Room Temperature Impact Consolidation (RTIC) of Fine Ceramic Powder by Aerosol Deposition Method and Applications to Microdevices, JTTEE5, 2008, 17, p 181-198Google Scholar
  3. 3.
    J. Akedo, Aerosol Deposition of Ceramic Thick Films at Room Temperature Densification Mechanism of Ceramic Layers, J. Am. Ceram. Soc., 2006, 89, p 1834-1839CrossRefGoogle Scholar
  4. 4.
    Y. Imanaka, N. Hayashi, M. Takenouchi, and J. Akedo, Technology for Embedding Capacitors on Printed Wiring Board Using Aerosol Deposition, Proc. of Ceramic Interconnect and Ceramic Microsystems Technologies, 2006.Google Scholar
  5. 5.
    Y. Imanaka, N. Hayashi, M. Takenouchi, and J. Akedo, Aerosol Deposition for Post-LTCC, J. Eur. Ceram. Soc., 2007, 27, p 2789-2795CrossRefGoogle Scholar
  6. 6.
    J. Akedo, Aerosol Deposition Method for Fabrication of Nano Crystal Ceramic Layer—Novel ceramic coating with collision of fine powder at room temperature, Mater. Sci. Forum, 2004, 449-452, p 43-48CrossRefGoogle Scholar
  7. 7.
    Y. Kawakami, H. Yoshikawa, K. Komagata, and J. Akedo, Powder Preparation for 0.5Pb(Ni1/3Nb2/3)O3-0.15PbZrO3-0.35PbTiO3 Thick Films by the Aerosol Deposition Method, J. Cryst. Growth., 2005, 275, p el295-el300CrossRefGoogle Scholar
  8. 8.
    J. Akedo and M. Lebedev, Piezoelectric Properties and Poling Effect of Pb(Zr, Ti)O3 Thick Films Prepared for Microactuators by Aerosol Deposition, Appl. Phys. Lett., 2000, 77, p 1710-1712CrossRefGoogle Scholar
  9. 9.
    S. Sugimoto, T. Maeda, R. Kobayashi, J. Akedo, M. Lebedev, and K. Inomata, Magnetic Properties of Sm-Fe-N Thick Film Magnets Prepared by the Aerosol Deposition Method, IEEE Trans. Magn., 2003, 39, p 2986-2988CrossRefGoogle Scholar
  10. 10.
    S. Sugimoto, T. Maki, T. Kagotani, J. Akedo, and K. Inomata, Effect of Applied Field during Aerosol Deposition on the Anisotropy of Sm-Fe-N Thick Films, J. Magn. Magn. Mater., 2005, 290-291, p 1202-1205CrossRefGoogle Scholar
  11. 11.
    D.M. Chun and S.H. Ahn, Deposition mechanism of dry sprayed ceramic particles at room temperature using a nano-particle deposition system, Acta Mater., 2011, 59, p 2693-2703CrossRefGoogle Scholar
  12. 12.
    H. Park, J. Kwon, I. Lee, and C. Lee, Shock-induced plasticity and fragmentation phenomena during alumina deposition in the vacuum kinetic spraying process, Scr. Mater., 2015, 100, p 44-47CrossRefGoogle Scholar
  13. 13.
    M. Schubert, J. Exner, and R. Moos, Influence of Carrier Gas Composition on the Stress of Al2O3 Coatings Prepared by Aerosol Deposition Method, Materials, 2014, 7, p 5633-5642CrossRefGoogle Scholar
  14. 14.
    D.W. Lee and S.M. Nam, Factors affecting surface roughness of Al2O3 films deposited on Cu substrates by an aerosol deposition method, J. Ceram. Process. Res., 2010, 11, p 100-106Google Scholar
  15. 15.
    S.H. Cho and Y.J. Yoon, Multi-layer TiO2 films prepared by aerosol deposition method for dye-sensitized solar cells, Thin Solid Films, 2013, 547, p 91-94CrossRefGoogle Scholar
  16. 16.
    Y.J. Heo, H.T. Kim, K.J. Kim, S. Nahm, Y.J. Yoon, and J. Kim, Enhanced heat transfer by room temperature deposition of AlN film on aluminum for a light emitting diode package, Appl. Therm. Eng., 2013, 50, p 799-804CrossRefGoogle Scholar
  17. 17.
    J. Exner, P. Fuierer, and R. Moos, Aerosol Codeposition of Ceramics: Mixtures of Bi2O3-TiO2 and Bi2O3-V2O5, J. Am. Ceram. Soc., 2015, 98, p 717-723CrossRefGoogle Scholar
  18. 18.
    V. Swamy, A. Kuznetsov, L.S. Dubrovinsky, P.F. McMillan, V.B. Prakapenka, G. Shen, and B.C. Muddle, Size-Dependent Pressure-Induced Amorphization in Nanoscale TiO2, Phys. Rev. Lett., 2006, 96, p 135702-135704CrossRefGoogle Scholar
  19. 19.
    M. Chen, J.W. McCauley, and K.J. Hemker, Shock-Induced Localized Amorphization in Boron Carbide, Science, 2003, 299, p 1563-1566CrossRefGoogle Scholar
  20. 20.
    G. Subhash, S. Maiti, P.H. Geubelle, and D. Ghosh, Recent Advances in Dynamic Indentation Fracture, Impact Damage and Fragmentation of Ceramics, J. Am. Ceram. Soc., 2008, 91, p 2777-2791CrossRefGoogle Scholar
  21. 21.
    A. Montagne, S. Pathak, X. Maeder, and J. Michler, Plasticity and Fracture of Sapphire at Room Temperature: Load-Controlled Microcompression of Four Different Orientations, Ceram. Int., 2014, 40, p 2083-2090CrossRefGoogle Scholar
  22. 22.
    A.R. Beaber, J.D. Nowak, O. Ugurlu, W.M. Mook, S.L. Girshick, R. Ballarini, and W.W. Gerberich, Smaller is Tougher, Philos. Mag., 2011, 91, p 1179-1189CrossRefGoogle Scholar
  23. 23.
    W.W. Gerberich, J. Michler, W.M. Mook, R. Ghisleni, F. Ostlund, D.D. Stauffer, and R. Ballarini, Scale Effects for Strength, Ductility, and Toughness in “Brittle” Materials, J. Mater. Res., 2009, 24, p 898-906CrossRefGoogle Scholar
  24. 24.
    W.W. Gerberich, W.M. Mook, M.J. Cordill, C.B. Carter, C.R. Perrey, J.V. Heberlein, and S.L. Girshick, Reverse Plasticity in Single Crystal Silicon Nanospheres, Int. J. Plast., 2005, 21, p 2391-2405CrossRefGoogle Scholar
  25. 25.
    F. Ostlund, K. Rzepiejewska-Malyska, K. Leifer, L.M. Hale, Y. Tang, R. Ballarini, W.W. Gerberich, and J. Michler, Brittle-to-Ductile Transition in Uniaxial Compression of Silicon Pillars at Room Temperature, Adv. Funct. Mater., 2009, 19, p 2439-2444CrossRefGoogle Scholar
  26. 26.
    G. Xu and C. Zhang, Analysis of Dislocation Nucleation from a Crystal Surface Based on the Peierls-Nabarro Dislocation Model, J. Mech. Phys. Solids, 2003, 51, p 1371-1394CrossRefGoogle Scholar
  27. 27.
    P.R. Howie, S. Korte, and W.J. Clegg, Fracture Modes in Micropillar Compression of Brittle Crystals, J. Mater. Res., 2012, 27, p 141-151CrossRefGoogle Scholar
  28. 28.
    F. Ostlund, P.R. Howie, R. Ghisleni, S. Korte, K. Leifer, W.J. Clegg, and J. Michler, Ductile-Brittle Transition in Micropillar Compression of GaAs at Room Temperature, Philos. Mag., 2011, 91, p 1190-1199CrossRefGoogle Scholar
  29. 29.
    S. Blonski and S.H. Garofalini, Molecular Dynamics Study of Silica-Alumina Interfaces, J. Phys. Chem., 1996, 100, p 2201-2205CrossRefGoogle Scholar
  30. 30.
    D.A. Litton and S.H. Garofalini, Modeling of Hydrophilic Wafer Bonding by Molecular Dynamics Simulations, J. Appl. Phys., 2001, 89, p 6013-6023CrossRefGoogle Scholar
  31. 31.
    Hysitron I, SEM Picoindenter User Manual. Revision 9.3.0913 edn., 2013Google Scholar
  32. 32.
    K. Hattar, D.C. Bufford, and D.L. Buller, Concurrent in Situ Ion Irradiation Transmission Electron Microscope, Nucl. Instrum. Methods Phys. Res. B, 2014, 338, p 56-65CrossRefGoogle Scholar
  33. 33.
    N.I. Tymiak and W.W. Gerberich, Initial Stages of Contact-Induced Plasticity in Sapphire. I. Surfaces Traces of Slip and Twinning, Philos. Mag., 2007, 87, p 5143-5168CrossRefGoogle Scholar
  34. 34.
    N.I. Tymiak and W.W. Gerberich, Initial Stages of Contact-Induced Plasticity in Sapphire. II. Mechanisms of Plasticity Initiation, Philos. Mag., 2007, 87, p 5169-5188CrossRefGoogle Scholar
  35. 35.
    R. Nowak, T. Sekino, and K. Niihara, Surface Deformation of Sapphire Crystal, Philos. Mag. A, 1996, 74, p 171-194CrossRefGoogle Scholar
  36. 36.
    J.D. Clayton, A Continuum Description of Nonlinear Elasticity, Slip and Twinning, with Application to Sapphire, Proc. R. Soc. A., 2009, 465, p 307-344CrossRefGoogle Scholar
  37. 37.
    E.R. Dobrovinskaya, L.A. Lytvynov, and V. Pishchik, Properties of Sapphire, Sapphire, Springer, Boston, MA, 2009Google Scholar
  38. 38.
    Materials Science and Engineering Serving Society, R.P.H. Chang, R. Roy, M. Doyama, and S. Somiya, Ed., Elsevier Science, The Netherlands, 1998Google Scholar

Copyright information

© ASM International 2015

Authors and Affiliations

  • Pylin Sarobol
    • 1
    Email author
  • Michael Chandross
    • 1
  • Jay D. Carroll
    • 1
  • William M. Mook
    • 1
  • Daniel C. Bufford
    • 1
  • Brad L. Boyce
    • 1
  • Khalid Hattar
    • 1
  • Paul G. Kotula
    • 1
  • Aaron C. Hall
    • 1
  1. 1.Sandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations