Journal of Thermal Spray Technology

, Volume 24, Issue 3, pp 357–377 | Cite as

Structure Property Relationship of Suspension Thermally Sprayed WC-Co Nanocomposite Coatings

  • R. AhmedEmail author
  • N. H. Faisal
  • Nayef M. Al-Anazi
  • S. Al-Mutairi
  • F.-L. Toma
  • L.-M. Berger
  • A. Potthoff
  • E. K. Polychroniadis
  • M. Sall
  • D. Chaliampalias
  • M. F. A. Goosen
Peer Reviewed


Tribomechanical properties of nanostructured coatings deposited by suspension high velocity oxy-fuel (S-HVOF) and conventional HVOF (Jet Kote) spraying were evaluated. Nanostructured S-HVOF coatings were obtained via ball milling of the agglomerated and sintered WC-12Co feedstock powder, which were deposited via an aqueous-based suspension using modified HVOF (TopGun) process. Microstructural evaluations of these hardmetal coatings included transmission electron microscopy, x-ray diffraction, and scanning electron microscopy equipped with energy dispersive x-ray spectroscopy. The nanohardness and modulus of the coated specimens were investigated using a diamond Berkovich nanoindenter. Sliding wear tests were conducted using a ball-on-flat test rig. Results indicated that low porosity coatings with nanostructured features were obtained. High carbon loss was observed, but coatings showed a high hardness up to 1000 HV2.9N. S-HVOF coatings also showed improved sliding wear and friction behavior, which were attributed to nanosized particles reducing ball wear in three-body abrasion and support of metal matrix due to uniform distribution of nanoparticles in the coating microstructure.


nanoindentation nanostructured coating suspension spraying tribology WC-Co coating wear 



Authors acknowledge the support of Youssef Elakwah at Alfaisal University KSA in conducting the nanoindentation experiments. Irina Shakhverdova (Fraunhofer IWS) is thanked for support in evaluation of XRD pattern. Financial support of Saudi Aramco for the research project is also gratefully acknowledged.


  1. 1.
    P. Fauchais, G. Montavon, R.S. Lima, and B.R. Marple, Engineering a New Class of Thermal Spray Nano-based Microstructures from Agglomerated Nanostructured Particles, Suspension and Solutions: An Invited Review, J. Phys. D, 2011, 44, p 093001CrossRefGoogle Scholar
  2. 2.
    J. Oberste Berghaus, B. Marple, and C. Moreau, Suspension Plasma Spraying of Nanostructured WC-12Co Coatings, J. Therm. Spray Technol., 2006, 15(4), p 676-681CrossRefGoogle Scholar
  3. 3.
    V. Chawla, B.S. Sidhu, D. Puri, and S. Prakash, State of Art: Plasma Sprayed Nanostructured Coatings: A Review, Mater. Forum, 2008, 32, p 137-143Google Scholar
  4. 4.
    Z.Z. Fang, X. Wang, T. Ryu, K.S. Hwang, and H.Y. Sohn, Synthesis, Sintering, and Mechanical Properties of Nanocrystalline Cemented—A Review, Int. J. Refract. Met. Hard Mater., 2009, 27(2), p 288-299CrossRefGoogle Scholar
  5. 5.
    L.-M. Berger, Comprehensive Hard Materials, Hardmetals, Vol 1, V. Sarin, D. Mari, L. Llanes, and C. Nebel, Ed., Elsevier, Amsterdam, 2014, p 479-514 Google Scholar
  6. 6.
    V. Stoica, R. Ahmed, T. Itsukaichi, and S. Tobe, Sliding Wear Evaluation of HIPed Thermal Spray Cermet Coatings, Wear, 2004, 257(11), p 1103-1124CrossRefGoogle Scholar
  7. 7.
    S. Stewart, R. Ahmed, and T. Itsukaichi, Rolling Contact Fatigue of Post-treated WC-NiCrBSi Thermal Spray Coatings, Surf. Coat. Technol., 2005, 190(2-3), p 171-189CrossRefGoogle Scholar
  8. 8.
    R. Ahmed and M. Hadfield, Mechanisms of Fatigue Failure in Thermal Spray Coatings, J. Therm. Spray Technol., 2002, 11(3), p 333-349CrossRefGoogle Scholar
  9. 9.
    Š. Houdková, F. Zahálka, M. Kašparová, and L.-M. Berger, Comparative Study of Thermally Sprayed Coatings Under Different Types of Wear Conditions for Hard Chromium Replacement, Tribol. Lett., 2011, 43(2), p 139-154CrossRefGoogle Scholar
  10. 10.
    F.-L. Toma, L.-M. Berger, C.C. Stahr, T. Naumann, and S. Langner, Microstructures and Functional Properties of Suspension-Sprayed Al2O3 and TiO2 Coatings: An Overview, J. Therm. Spray Technol., 2010, 19(1-2), p 262-274CrossRefGoogle Scholar
  11. 11.
    V. Bonache, M.D. Salvador, J.C. García, E. Sánchez, and E. Bannier, Influence of Plasma Intensity on Wear and Erosion Resistance of Conventional and Nanometric WC-Co Coatings Deposited by APS, J. Therm. Spray Technol., 2011, 20(3), p 549-559CrossRefGoogle Scholar
  12. 12.
    E. Sánchez, E. Bannier, M.D. Salvador, V. Bonache, J.C. García, J. Morgiel, and J. Grzonka, Microstructure and Wear Behavior of Conventional and Nanostructured Plasma-Sprayed WC-Co Coatings, J. Therm. Spray Technol., 2010, 19(5), p 964-974CrossRefGoogle Scholar
  13. 13.
    G. Bolelli, V. Cannillo, L. Lusvarghi, R. Rosa, A.V. Wanhuk, B. Choib, R. Dey, C. Weyant, and S. Sampath, Functionally Graded WC-Co/NiAl HVOF Coatings for Damage Tolerance, Wear and Corrosion Protection, Surf. Coat. Technol., 2012, 206(8-9), p 2585-2601CrossRefGoogle Scholar
  14. 14.
    H. Chen, G. Gou, M. Tu, and Y. Liu, Research on the Friction and Wear Behavior at Elevated Temperature of Plasma-Sprayed Nanostructured WC-Co Coatings, J. Mater. Eng. Perform., 2010, 19(1), p 1-6CrossRefGoogle Scholar
  15. 15.
    H.L. de Villiers Lovelock, Powder/Processing/Structure Relationship in WC-Co Thermal Spray Coatings: A Review of the Published Literature, J. Therm. Spray Technol., 1998, 7(3), p 357-373CrossRefGoogle Scholar
  16. 16.
    S. Stewart and R. Ahmed, Contact Fatigue Failure Modes in Hot Isostatically Pressed WC-12%Co Coatings, Surf. Coat. Technol., 2003, 172(2-3), p 204-216CrossRefGoogle Scholar
  17. 17.
    V. Stoica and R. Ahmed, Influence of Vacuum Heat Treatment on Sliding Wear of Thermal Spray Cermet Coatings, Surf. Coat. Technol., 2005, 199(1), p 7-21CrossRefGoogle Scholar
  18. 18.
    V. Stoica, R. Ahmed, and S. Tobe, Wear of Hot Isostatically Pressed (HIPed) Thermal Spray Cermet Coatings, J. Therm. Spray Technol., 2004, 13(1), p 93-107Google Scholar
  19. 19.
    P. Chivavibul, M. Watanabe, S. Kuroda, and K. Shinoda, Effects of Carbide Size and Co Content on the Microstructure and Mechanical Properties of HVOF-Sprayed WC-Co Coatings, Surf. Coat. Technol., 2007, 202(3), p 509-521CrossRefGoogle Scholar
  20. 20.
    J. He and J.M. Schoenung, Nanostructured Coatings, Mater. Sci. Eng. A, 2002, 336, p 274-319CrossRefGoogle Scholar
  21. 21.
    R. Ahmed, N.H. Faisal, A.M. Paradowska, M.E. Fitzpatrick, and K.A. Khor, Neutron Diffraction Residual Strain Measurements in Nanostructured Hydroxyapatite Coatings for Orthopaedic Implants, J. Mech. Behav. Biomater., 2011, 4(8), p 2043-2054CrossRefGoogle Scholar
  22. 22.
    F. Tarasi, “Suspension Plasma Sprayed Alumina-Yttria Stabilized Zirconia Nanocomposite Thermal Barrier Coatings-Formation and Roles of the Amorphous Phase,” Ph.D. Thesis, Concordia University, 2010Google Scholar
  23. 23.
    P. Fauchais and G. Montavon, Latest Developments in Suspension and Liquid Precursor Thermal Spraying, J. Therm. Spray Technol., 2010, 19(1-2), p 226-239CrossRefGoogle Scholar
  24. 24.
    P. Fauchais and A. Vardelle, Innovative and Emerging Processes in Plasma Spraying: From Micro-to Nanostructured Coatings, J. Phys. D, 2011, 44, p 194011CrossRefGoogle Scholar
  25. 25.
    A.S.M. Ang and C.C. Berndt, A Review of Testing Methods for Thermal Spray Coatings, Int. Mater. Rev., 2014, 59(4), p 179-223CrossRefGoogle Scholar
  26. 26.
    M. Couto, S. Dosta, M. Torrell, J. Fernández, and J.M. Guilemany, Cold Spray Deposition of WC-17 and 12Co Cermets onto Aluminum, Surf. Coat. Technol., 2013, 235, p 54-61CrossRefGoogle Scholar
  27. 27.
    J.M. Guilemany, S. Dosta, J. Nin, and J.R. Miguel, Study of the Properties of WC-Co Nanostructured Coatings Sprayed by High-Velocity Oxy Fuel, J. Therm. Spray Technol., 2005, 14(3), p 405-413CrossRefGoogle Scholar
  28. 28.
    Z.-G. Ban and L.L. Shaw, Characterization of Thermal Sprayed Nanostructured WC-Co Coatings Derived from Nanocrystalline WC-18wt.%Co Powders, J. Therm. Spray Technol., 2003, 12, p 112-119CrossRefGoogle Scholar
  29. 29.
    F.-L. Toma, L.-M. Berger, S. Scheitz, S. Langner, C. Rödel, A. Potthoff, V. Sauchuk, and M. Kusnezoff, Comparison of the Microstructural Characteristics and Electrical Properties of Thermally Sprayed Al2O3 Coatings from Aqueous Suspensions and Feedstock Powders, J. Therm. Spray Technol., 2012, 21(3-4), p 480-488CrossRefGoogle Scholar
  30. 30.
    L.-M. Berger, F.-L. Toma, and A. Potthoff, Thermal Spraying with Suspensions—An Economic Spray Process, Therm. Spray Bull., 2013, 6(2), p 98-101Google Scholar
  31. 31.
    F.-L. Toma, L.-M. Berger, S. Langner, and T. Naumann, Suspension Spraying-The Potential of a New Spray Technology, Therm. Spray Bull., 2010, 3(1), p 24-29Google Scholar
  32. 32.
    A. Killinger, M. Kuhn, and R. Gadow, High-Velocity Suspension Flame Spraying (HVSFS), a New Approach for Spraying Nanoparticles with Hypersonic Speed, Surf. Coat. Technol., 2006, 201(5), p 1922-1929CrossRefGoogle Scholar
  33. 33.
    A. Killinger, R. Gadow, A. Rempp, and A. Manzat, Advanced Ceramic Tribological Layers by Thermal Spray Routes, Adv. Sci. Technol., 2010, 66, p 106-119CrossRefGoogle Scholar
  34. 34.
    K. Korpiola, “High Temperature Oxidation of Metal, Alloy and Cermet Powders in HVOF Spraying Process,” Dissertation, Helsinki University of Technology, 2006Google Scholar
  35. 35.
    N.H. Faisal, J.A. Steel, R. Ahmed, and R.L. Reuben, The Use of Acoustic Emission (AE) to Characterise Vickers Indentation Behaviour of HVOF Thermally Sprayed WC-12%Co Coatings, J. Therm. Spray Technol., 2009, 18(4), p 525-535CrossRefGoogle Scholar
  36. 36.
    W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7, p 1564-1583CrossRefGoogle Scholar
  37. 37.
    S. Osawa, T. Itsukaichi, and R. Ahmed, Influence of Powder Size and Strength on HVOF Spraying—Mapping the Onset of Spitting, Advancing the Science and Applying the Technology, International Thermal Spray Conference, FL, USA, 2003, p 819-824Google Scholar
  38. 38.
    S. Thiele, K. Sempf, K. Jaenicke-Roessler, L.-M. Berger, and J. Spatzier, Thermophysical and Microstructural Studies on Thermally Sprayed Tungsten Carbide-Cobalt Coatings, J. Therm. Spray Technol., 2011, 20(1-2), p 358-365CrossRefGoogle Scholar
  39. 39.
    C. Verdon, A. Karimi, and J.-L. Martin, A Study of High Velocity Oxy-Fuel Thermally Sprayed Tungsten Carbide Based Coatings. Part 1: Microstructures, Mater. Sci. Eng., 1998, A246(1-2), p 11-24CrossRefGoogle Scholar
  40. 40.
    D.A. Stewart, P.H. Shipway, and D.G. McCartney, Microstructural Evolution in Thermally Sprayed WC-Co Coatings: Comparison Between Nanocomposite and Conventional Starting Powders, Acta Mater., 2000, 48(7), p 1593-1604CrossRefGoogle Scholar
  41. 41.
    A.S. Kurlov and A.I. Gusev, Tungsten Carbides and W-C Phase Diagram, Neorganicheskie Materialy, 2006, 42(2), p 156-163, [in Russian] [Inorganic Materials, 2006, 42(2), p 121-127, in English]Google Scholar
  42. 42.
    R. Ahmed, H. Yu, L. Edwards, and J. Santisteban, Neutron Diffraction Residual Strain Measurements in Post-treated Thermal Spray Cermet Coatings, Mater. Sci. Eng. A, 2008, 498, p 191-202CrossRefGoogle Scholar

Copyright information

© ASM International 2014

Authors and Affiliations

  • R. Ahmed
    • 1
    • 2
    Email author
  • N. H. Faisal
    • 1
    • 3
  • Nayef M. Al-Anazi
    • 4
  • S. Al-Mutairi
    • 4
  • F.-L. Toma
    • 5
  • L.-M. Berger
    • 6
  • A. Potthoff
    • 6
  • E. K. Polychroniadis
    • 7
  • M. Sall
    • 7
  • D. Chaliampalias
    • 7
  • M. F. A. Goosen
    • 8
  1. 1.College of EngineeringAlfaisal UniversityRiyadhSaudi Arabia
  2. 2.School of Engineering and Physical SciencesHeriot-Watt UniversityEdinburghUK
  3. 3.School of EngineeringRobert Gordon UniversityAberdeenUK
  4. 4.Materials Performance Unit, Research & Development CentreSaudi AramcoDhahranSaudi Arabia
  5. 5.Fraunhofer Institute for Material and Beam Technology - IWSDresdenGermany
  6. 6.Fraunhofer Institute for Ceramic Technologies and Systems - IKTSDresdenGermany
  7. 7.Department of PhysicsAristotle University of ThessalonikiThessaloníkiGreece
  8. 8.Office of Research & Graduate StudiesAlfaisal UniversityRiyadhSaudi Arabia

Personalised recommendations