Microstructure and Electron Energy-Loss Spectroscopy Analysis of Interface Between Cu Substrate and Al2O3 Film Formed by Aerosol Deposition Method


Aerosol deposition method is a technique to form dense films by impacting solid particles on a substrate at room temperature. To clarify the bonding mechanism between AD films and substrates, TEM observation and electron energy-loss spectroscopy (EELS) analysis of the interface between Al2O3 AD films and Cu substrates were conducted. The Al2O3 film was directly adhered to the Cu substrate without any void or crack. The film was composed of randomly oriented α-Al2O3 crystal grains of about 10-20 nm large. At the Al2O3/Cu interface, the lattice fringes of the film were recognized, and no interfacial layer with nanometer-order thickness could be found. EELS spectra near O-K edge obtained at the interface had the pre-peak feature at around 528 eV. According to previously reported experiments and theoretical calculations, this suggests interactions between Cu and O in Al2O3 at the interface. It is inferred that not only the anchoring effect but also the ionic bonding and covalent bonding that originates from the Cu-O interactions contribute to the bonding between Al2O3 AD films and Cu substrates.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    J. Akedo, Room Temperature Impact Consolidation (RTIC) of Fine Ceramic Powder by Aerosol Deposition Method and Applications to Microdevices, J. Therm. Spray Technol., 2008, 17(2), p 181-198

    Article  Google Scholar 

  2. 2.

    W.-H. Yoon, J. Ryu, J.-J. Choi, B.-D. Hahn, J.H. Choi, B.-K. Lee, J.-H. Cho, and D.-S. Park, Enhanced Thermoelectric Properties of Textured Ca3Co4O9 Thick Film by Aerosol Deposition, J. Am. Ceram. Soc., 2010, 93(8), p 2125-2127

    Article  Google Scholar 

  3. 3.

    Y.-H. Kim, H.-J. Kim, J.-H. Koh, J.-G. Ha, Y.-H. Yun, and S.-M. Nam, Fabrication of BaTiO3-PTFE Composite Film for Embedded Capacitor Employing Aerosol Deposition, Ceram. Int., 2011, 37, p 1859-1864

    Article  Google Scholar 

  4. 4.

    J. Akedo and M. Lebedev, Microstructure and Electrical Properties of Lead Zirconate Titanate (Pb(Zr52/Ti48)O3)) Thick Films Deposited by Aerosol Deposition Method, Jpn. J. Appl. Phys., 1999, 38, p 5397-5401

    Article  Google Scholar 

  5. 5.

    J. Akedo and M. Lebedev, Powder Preparation in Aerosol Deposition Method for Lead Zirconate Titanate Thick Films, Jpn. J. Appl. Phys., 2002, 41, p 6980-6984

    Article  Google Scholar 

  6. 6.

    S.-M. Nam, N. Mori, H. Kakemoto, S. Wada, J. Akedo, and T. Tsurumi, Alumina Thick Films as Integral Substrates Using Aerosol Deposition Method, Jpn. J. Appl. Phys., 2004, 43(8A), p 5414-5418

    Article  Google Scholar 

  7. 7.

    J. Akedo, M. Lebedev, H. Sato, and J. Park, High-Speed Optical Microsanner Driven with Resonation of Lam Waves Using Pb(Zr, Ti)O3 Thick Films Formed by Aerosol Deposition Method, Jpn. J. Appl. Phys., 2005, 44(9B), p 7072-7077

    Article  Google Scholar 

  8. 8.

    Y. Imanaka and J. Akedo, Integrated RF Module Produced by Aerosol Deposition Method, Proceedings of the 54th Electronic Components and Technology Conference (ECTC), June 1-4, 2004 (Las Vegas), 2004, p 1614-1620

  9. 9.

    M. Nakada, K. Ohashi, and J. Akedo, Optical and Electro-Optical Properties of Pb(Zr, Ti)O3 and (Pb, La)(Zr, Ti)O3 Films Prepared by Aerosol Deposition Method, J. Cryst. Growth, 2005, 275, p e1275-e1280

    Article  Google Scholar 

  10. 10.

    M. Nakada, K. Ohashi, and J. Akedo, Elector-Optic Properties of Pb(Zr1−X Ti X )O3 (X = 0, 0.3, 0.6) Films Prepared by Aerosol Deposition, Jpn. J. Appl. Phys., 2005, 44(34), p L1088-L1090

    Article  Google Scholar 

  11. 11.

    R. Sakamaki, T. Hoshina, H. Kakemoto, K. Yasuda, H. Takeda, J. Akedo, and T. Tsurumi, Heat-Cycle Endurance and in-Plane Thermal Expansion of Al2O3/Al Substrate Formed by Aerosol Deposition Method, J. Ceram. Soc. Jpn., 2008, 116(12), p 1299-1303

    Article  Google Scholar 

  12. 12.

    J. Akedo, Aerosol Deposition of Ceramic Thick Films at Room Temperature: Densification Mechanism of Ceramic Layers, J. Am. Ceram. Soc., 2006, 89(6), p 1834-1839

    Article  Google Scholar 

  13. 13.

    Y.-Y. Wang, H.-F. Zhou, Y.-J. Zhang, C.-J. Li, G.-J. Yang, and K. Kusumoto, Effect of substrate Elastic Modulus on Microstructure and Bonding of Al2O3 Coating Deposited by Vacuum Cold Spray, Proceedings of the 5th Asian Thermal Spray Conference (ATSC), November 26-28, 2012 (Tsukuba), 2012, p 79-80

  14. 14.

    K. Naoe, M. Nishiki, and A. Yumoto, Relationship Between Impact Velocity of Al2O3 Particles and Deposition Efficiency in Aerosol Deposition Method, J. Therm. Spray Technol., 2013, 22(8), p 1267-1274

    Article  Google Scholar 

  15. 15.

    K. Naoe, K. Sato, and M. Nishiki, Effect of Process for Producing Al2O3 Particles on Deposition Efficiency in Aerosol Deposition Method, J. Ceram. Soc. Jpn., 2014, 122(1), p 110-116

    Article  Google Scholar 

  16. 16.

    Y. Xiong, K. Kang, G. Bae, S. Yoon, and C. Lee, Dynamic Amorphization and Recrystallization of Metals in Kinetic Spray Process, Appl. Phys. Lett., 2008, 92, p 194101

    Article  Google Scholar 

  17. 17.

    M. Fukumoto, Particle Deposition Mechanism in Both Thermal Spray and Cold Spray, Funct. Mater., 2009, 29(7), p 24-34 [in Japanese]

    Google Scholar 

  18. 18.

    Y. Ito, H. Jain, and D.B. Williams, Electron-Beam Induced Growth of Cu Nanoparticles in Silica Glass Matrix, Appl. Phys. Lett., 1999, 75(24), p 3793-3795

    Article  Google Scholar 

  19. 19.

    T. Sasaki, K. Matsunaga, H. Ohta, H. Hosono, T. Yamamoto, and Y. Ikuhara, Atomic and Electronic Structures of Cu/α-Al2O3 Interfaces Prepared by Pulsed-Laser Deposition, Sci. Technol. Adv. Mater., 2003, 4, p 575-584

    Article  Google Scholar 

  20. 20.

    T. Mizoguchi, T. Sasaki, S. Tanaka, K. Matsunaga, T. Yamamoto, M. Kohyama, and Y. Ikuhara, Chemical Bonding, Interface Strength, and Oxygen K Electron-Energy-Loss Near-Edge Structure of Cu/Al2O3 Interface, Phys. Rev. B, 2006, 74, p 235408

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Kazuaki Naoe.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Naoe, K., Nishiki, M. & Sato, K. Microstructure and Electron Energy-Loss Spectroscopy Analysis of Interface Between Cu Substrate and Al2O3 Film Formed by Aerosol Deposition Method. J Therm Spray Tech 23, 1333–1338 (2014). https://doi.org/10.1007/s11666-014-0172-4

Download citation


  • aerosol deposition method
  • alumina
  • bonding mechanism
  • electron energy-loss spectroscopy
  • metal-ceramic interface