Skip to main content

Advertisement

Log in

Nanostructural Characteristics of Vacuum Cold-Sprayed Hydroxyapatite/Graphene-Nanosheet Coatings for Biomedical Applications

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Development of novel biocompatible nanomaterials has provided insights into their potential biomedical applications. Bulk fabrication of the nanomaterials in the form of coatings remains challenging. Here, we report hydroxyapatite (HA)/graphene-nanosheet (GN) composite coatings deposited by vacuum cold spray (VCS). Significant shape changes of HA nanograins during the coating deposition were revealed. The nanostructural features of HA together with curvature alternation of GN gave rise to dense structures. Based on the microstructural characterization, a structure model was proposed to elucidate the nanostructural characteristics of the HA-GN nanocomposites. Results also showed that addition of GN significantly enhanced fracture toughness and elastic modulus of the HA-based coatings, which is presumably accounted for by crack bridging offered by GN in the composites. The VCS HA-GN coatings show potential for biomedical applications for the repair or replacement of hard tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R.G.T. Geesink, K. de Groot, and C.P. Klein, Bonding of Bone to Apatite-Coated Implants, J. Bone Joint Surg., 1988, 70B, p 17-22

    Google Scholar 

  2. S.D. Cook, K.A. Thomas, J.F. Dalton, T.K. Volkman, T.S. Whitecloud, III, and J.F. Kay, Hydroxyapatite Coating of Porous Implants Improves Bone Ingrowth and Interface Face Attachment Strength, J. Biomed. Mater. Res., 1992, 26, p 989-1001

    Article  Google Scholar 

  3. P.K. Stephenson, M.A. Freeman, P.A. Revell, J. Germain, M. Tuke, and C.J. Pirie, The Effect of Hydroxyapatite Coating on Ingrowth of Bone into Cavities in An Implant, J. Arthroplasty, 1991, 6, p 51-58

    Article  Google Scholar 

  4. J.E. Dalton and S.D. Cook, In Vivo Mechanical and Histological Characteristics of HA-Coated Implants Vary with Coating Vendor, J. Biomed. Mater. Res., 1995, 29, p 239-245

    Article  Google Scholar 

  5. L. Sun, C.C. Berndt, K.A. Gross, and A. Kucuk, Material Fundamentals and Clinical Performance of Plasma Sprayed Hydroxyapatite Coatings: A Review, J. Biomed. Mater. Res., 2001, 58, p 570-592

    Article  Google Scholar 

  6. T.J. Webster, R.W. Siegel, and R. Bizios, Osteoblast Adhesion on Nanophase Ceramics, Biomaterials, 1999, 20, p 1221-1227

    Article  Google Scholar 

  7. L.G. Gutwein and T.J. Webster, Increased Viable Osteoblast Density in the Presence of Nanophase Compared to Conventional Alumina and Titania Particles, Biomaterials, 2004, 25, p 4175-4183

    Article  Google Scholar 

  8. T.J. Webster, C. Ergun, R.H. Doremus, R.W. Siegel, and R. Bizios, Enhanced Functions of Osteoblasts on Nanophase Ceramics, Biomaterials, 2000, 21, p 1803-1810

    Article  Google Scholar 

  9. Y.W. Gu, N.H. Loha, K.A. Khor, S.B. Tor, and P. Cheang, Spark Plasma Sintering of Hydroxyapatite Powders, Biomaterials, 2002, 23, p 37-43

    Article  Google Scholar 

  10. H. Li, K.A. Khor, and P. Cheang, Titanium Dioxide Reinforced Hydroxyapatite Coatings Deposited by High Velocity Oxy-Fuel (HVOF) Spray, Biomaterials, 2002, 23, p 85-91

    Article  Google Scholar 

  11. S. Saber-Samandari and K.A. Gross, Amorphous Calcium Phosphate Offers Improved Crack Resistance: A Design Feature from Nature?, Acta Biomater., 2011, 7, p 4235-4241

    Article  Google Scholar 

  12. S. Velayudhan, T.V. Anilkumar, T.V. Kumary, P.V. Mohanan, A.C. Fernandez, H.K. Varma, and P. Ramesh, Biological Evaluation of Pliable Hydroxyapatite-Ethylene Vinyl Acetate Co-polymer Composites Intended for Cranioplasty, Acta Biomater., 2005, 1, p 201-209

    Article  Google Scholar 

  13. H. Li, K.A. Khor, and P. Cheang, Impact Formation and Structure Characterization of Thermal Sprayed Hydroxyapatite/Titania Composite Coatings, Biomaterials, 2003, 24, p 949-957

    Article  Google Scholar 

  14. J. Li, B. Fartash, and L. Hermansson, Hydroxyapatite-Alumina Composites and None-Bonding, Biomaterials, 1995, 16, p 417-422

    Article  Google Scholar 

  15. H. Li, K.A. Khor, R. Kumar, and P. Cheang, Characterization of Hydroxyapatite/Nano-zirconia Composite Coatings Deposited by High Velocity Oxy-fuel (HVOF) Spray Process, Surf. Coat. Technol., 2004, 182, p 227-236

    Article  Google Scholar 

  16. D. Zhang, C. Yi, J. Zhang, Y. Chen, X. Yao, and M. Yang, The Effects of Carbon Nanotubes on the Proliferation and Differentiation of Primary Osteoblasts, Nanotechnology, 2007, 18, p 475102-475110

    Article  Google Scholar 

  17. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, and A.K. Geim, Two-Dimensional Atomic Crystals, Proc. Natl. Acad. Sci. USA, 2005, 102, p 10451-10453

    Article  Google Scholar 

  18. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, and R.S. Ruoff, Graphene-Based Composite Materials, Nature, 2006, 442, p 282-286

    Article  Google Scholar 

  19. T. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M. Herrera-Alonso, R.D. Piner, D.H. Adamson, H.C. Schniepp, X. Chen, R.S. Ruoff, S.T. Nguyen, I.A. Aksay, R.K. Prud’homme, and L.C. Brinson, Functionalized Graphene Sheets for Polymer Composites, Nat. Nanotechnol., 2008, 3, p 327-331

    Article  Google Scholar 

  20. L.S. Walker, V.R. Marotto, M.A. Rafiee, N. Koratkar, and E.L. Corral, Toughening in Graphene Ceramic Composites, ACS Nano, 2011, 5, p 3182-3190

    Article  Google Scholar 

  21. C. Chung, Y.K. Kim, D. Shin, S.R. Ryoo, B.H. Hong, and D.H. Min, Biomedical Applications of Graphene and Graphene Oxide, Acc. Chem. Res., 2013, 46, p 2211-2224

    Article  Google Scholar 

  22. Y. Wang, Z.H. Li, J. Wang, J.H. Li, and Y.H. Lin, Graphene and Graphene Oxide: Biofunctionalization and Applications in Biotechnology, Trends Biotechnol., 2011, 29, p 205-212

    Article  Google Scholar 

  23. H. Shen, L.M. Zhang, M. Liu, and Z.J. Zhang, Biomedical Applications of Graphene, Theranostics, 2012, 2, p 283-294

    Article  Google Scholar 

  24. R.S. Lima and B.R. Marple, Superior Performance of High-Velocity Oxyfuel-Sprayed Nanostructured TiO2 in Comparison to Air Plasma-Sprayed Conventional Al2O3-13TiO2, J. Therm. Spray Technol., 2005, 14, p 397-404

    Article  Google Scholar 

  25. J. Akedo, Aerosol Deposition Method for Fabrication of Nano Crystal Ceramic Layer-Novel Ceramics Coating with Collision of Fine Powder at Room Temperature, Mater. Sci. Forum, 2004, 449-452, p 43-48

    Article  Google Scholar 

  26. J. Akedo, Room Temperature Impact Consolidation (RTIC) of Fine Ceramic Powder by Aerosol Deposition Method and Applications to Microdevices, J. Therm. Spray. Technol., 2008, 17, p 181-198

    Article  Google Scholar 

  27. Y.Y. Wang, Y. Liu, C.J. Li, G.J. Yang, and K. Kusumoto, Electrical and Mechanical Properties of the Nanostructure TiN Coatings Deposited by Vacuum Cold Spray, Vacuum, 2012, 86, p 953-959

    Article  Google Scholar 

  28. Y. Liu, Y.Y. Wang, G.J. Yang, J.J. Feng, and K. Kusumoto, Effect of Nano-sized TiN Additions on the Electrical Properties of Vacuum Cold Sprayed SiC Coatings, J. Therm. Spray Technol., 2010, 19, p 1238-1243

    Article  Google Scholar 

  29. Y. Liu, J. Huang, and H. Li, Synthesis of Hydroxyapatite-Reduced Graphite Oxide Composites for Biomedical Applications: Oriented Nucleation and Epitaxial Growth of Hydroxyapatite, J. Mater. Chem. B, 2013, 1, p 1826-1834

    Article  Google Scholar 

  30. A.J. Perry, Scratch Adhesion Testing of Hard Coatings, Thin Solid Films, 1983, 107, p 167-180

    Article  Google Scholar 

  31. G.R. Anstis, P. Chantikul, B.R. Lawn, and D.B. Marschall, A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I, Direct Crack Measurements, J. Am. Ceram. Soc., 1981, 64(9), p 533-538

    Article  Google Scholar 

  32. Y.Y. Wang, Y. Liu, C.J. Li, G.J. Yang, J.J. Feng, and K. Kusumoto, Investigation on the Electrical Properties of Vacuum Cold Sprayed SiC-MoSi2 Coatings at Elevated Temperatures, J. Therm. Spray Technol., 2011, 20(4), p 892-897

    Article  Google Scholar 

  33. H.H. Huang, C.T. Ho, T.H. Lee, T.L. Lee, K.K. Liao, and F.L. Chen, Effect of Surface Roughness of Ground Titanium on Initial Cell Adhesion, Biomol. Eng., 2004, 21, p 93-97

    Article  Google Scholar 

  34. D.D. Deligianni, N.D. Katsala, P.G. Koutsoukos, and Y.F. Missirlis, Effect of Surface Roughness of Hydroxyapatite on Human Bone Marrow Cell Adhesion, Proliferation, Differentiation and Detachment Strength, Biomaterials, 2001, 22, p 87-96

    Article  Google Scholar 

  35. F. Gärtner, T. Stoltenhoff, T. Schmidt, and H. Kreye, The Cold Spray Process and Its Potential for Industrial Applications, J. Therm. Spray Technol., 2006, 15(2), p 892-897

    Article  Google Scholar 

  36. S. Romankov, Y. Hayasaka, G. Kalikova, S.V. Komarovd, N. Hayashia, and E. Kasai, TEM Study of TiN Coatings Fabricated by Mechanical Milling Using Vibration Technique, Surf. Coat. Technol., 2009, 203, p 1879-1884

    Article  Google Scholar 

  37. Y. Duan, S. Zhu, F. Guo, J. Zhu, M. Li, J. Ma, and Q. Zhu, The Effect of Adhesive Strength of Hydroxyapatite Coating on the Stability of Hydroxyapatite-Coated Prostheses in Vivo at the Early Stage of Implantation, Arch. Med. Sci., 2012, 8, p 199-208

    Article  Google Scholar 

  38. M. Komath, P. Rajesh, C.V. Muraleedharan, H.K. Varma, R. Reshmi, and M.K. Jayaraj, Formation of Hydroxyapatite Coating on Titanium at 200°C Through Pulsed Laser Deposition Followed by Hydrothermal Treatment, Bull. Mater. Sci., 2011, 34, p 389-399

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Grant # 31271017) and 100 Talents Program of Chinese Academy of Sciences (both to H.L.). The authors thank Drs. Yuyue Wang and Zhaohui Dang from Xi’an Jiaotong University, China for their technical help in making the coatings by VCS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Huang, J. & Li, H. Nanostructural Characteristics of Vacuum Cold-Sprayed Hydroxyapatite/Graphene-Nanosheet Coatings for Biomedical Applications. J Therm Spray Tech 23, 1149–1156 (2014). https://doi.org/10.1007/s11666-014-0069-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-014-0069-2

Keywords

Navigation