Skip to main content
Log in

Comparing Two Antibacterial Treatments for Bioceramic Coatings at Short Culture Times

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Plasma-sprayed hydroxyapatite coatings were employed industrially for decades to improve osteointegration of articular implants, but many studies have warned about the problems inherent to this procedure (mechanical properties, harmful phases). Consequently, a combination of hydroxyapatite with TiO2 sprayed by high velocity oxy-fuel spray was considered in this study. As infection after joint replacement surgery is one of the most critical concerns when considering implant performance, it is necessary to study possible ways to reduce or eliminate it. Two coating treatments were chosen for this study: addition of a percentage of ZnO and immersion in gentamicin for 24 h. Furthermore, three bacteria were considered: Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The evolution of bacteria viability in solution was measured at 0, 2, and 4 h; and plate assays were performed to study antibacterial effects by diffusion. The results show an important antibacterial effect of the as-sprayed coating, attributed to the presence of -OH radicals on the surface. The presence of ZnO did not have any additional influence on bacteria viability, but gentamicin-treated samples showed an improvement in antibacterial behavior for Gram-negative bacteria in solution, as well as a bactericidal effect in diffusion conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. O.M. Lidwell, E.J.L. Lowbury, W. Whyte, R. Blowers, S.J. Stanley, and D. Lowe, Infection and Sepsis After Operations for Total Hip or Knee-Joint Replacement: Influence of Ultraclean Air, Prophylactic Antibiotics and Other Factors, J. Hyg. (Camb.), 1984, 93, p 505-529

    Article  Google Scholar 

  2. O.M. Lidwell, R.A. Elson, E.J.L. Lowbury, W. Whyte, R. Blowers, S.J. Stanley, and D. Lowe, Ultraclean Air and Antibiotics for Prevention of Postoperative Infection, Acta Orthop. Scand., 1987, 58, p 4-13

    Article  Google Scholar 

  3. N. Davis, A. Curry, A.K. Gambhir, H. Panigrahi, C.R.C. Walker, E.G.L. Wilkins, M.A. Worsley, and P.R. Kay, Intraoperative Bacterial Contamination in Operations for Joint Replacement, J. Bone Jt. Surg. Br., 1999, 81-B, p 886-889

    Article  Google Scholar 

  4. S.A. Hedstrom, L. Lidgren, C. Torholm, and R. Onnerfalt, Antibiotic Containing Bone Cement Beads in the Treatment of Deep Muscle and Skeletal Infections, Acta Orthop. Scand., 1980, 51, p 863-869

    Article  Google Scholar 

  5. W. Jiang, H. Mashayekhi, and B. Xing, Bacterial Toxicity Comparison Between Nano- and Micro-Scaled Oxide Particles, Environ. Pollut., 2009, 157, p 1619-1625

    Article  Google Scholar 

  6. I. Perelshtein, G. Applerot, N. Perkas, E. Wehrschetz-Sigl, A. Hasmann, G.M. Guebitz, and A. Gedanken, Antibacterial Properties of an In Situ Generated and Simultaneously Deposited Nanocrystalline ZnO on Fabrics, Appl. Mater. Interfaces, 2009, 1, p 361-366

    Article  Google Scholar 

  7. H. Wahlig, E. Dingeldein, H.W. Buchholz, M. Buchholz, and F. Bachmann, Pharmacokinetic Study of Gentamicin-Loaded Cement in Total Hip Replacements, J Bone Jt. Surg. Br., 1984, 66B, p 175-179

    Google Scholar 

  8. V. Alt, A. Bitschnau, J. Osterling, A. Sewing, C. Meyer, R. Kraus, S.A. Meissner, S. Wenisch, E. Domann, and R. Schnettler, The Effects of Combined Gentamicin-Hydroxyapatite Coating for Cementless Joint Prostheses on the Reduction of Infection Rates in a Rabbit Infection Prophylaxis Model, Biomaterials, 2006, 27, p 4627-4634

    Article  Google Scholar 

  9. M. Teller, U. Gopp, H.G. Neumann, and K.D. Kuhn, Release of Gentamicin from Bone Regenerative Materials: An In Vitro Study, J. Biomed. Mater. Res. B, 2007, 81, p 23-29

    Article  Google Scholar 

  10. A. Corces and M. Garcia, Metallic Alloys, Medscape, http://emedicine.medscape.com/article/1230554-overview. Accessed 1 Sept 2013

  11. J.L. Gilbert, S.A. Mali, Medical Implant Corrosión: Electrochemistry at Metallic Biomaterial Surfaces. Degradation of Implant Materials, N. Eliaz, Ed., Springer, New York, 2012

  12. J. Enderle, J. Bronzino, Eds., Introduction to Biomedical Engineering, Elsevier, Oxford, 2012

  13. R. Chiesa and A. Cigada, Integrating Materials with Tissue, Biomimetic, Bioresponsive and Bioactive Materials, M. Santin and G.J. Phillips, Eds., Wiley, New Jersey, 2012

  14. N.J. Hallab and J.J. Jacobs, Orthopedic Implant Fretting Corrosion, Corros. Rev., 2003, 21, p 183-214

    Article  Google Scholar 

  15. K. De Groot, R. Geesink, C.P. Klein, and P. Serekian, Plasma-Sprayed Coatings of Hydroxylapatite, J. Biomed. Mater. Res. Part A, 1987, 21, p 1375-1381

    Article  Google Scholar 

  16. J.P. Collier, V.A. Surprenant, M.B. Mayor, M. Wrona, R.E. Jensen, and H.P. Surprenant, Loss of Hydroxyapatite Coating on Retrieved, Total Hip Components, J. Arthroplast., 1993, 8, p 389-393

    Article  Google Scholar 

  17. K. Balani, R. Anderson, T. Laha, M. Andara, J. Tercero, E. Crumpler, and A. Agarwal, Plasma-Sprayed Carbon Nanotube Reinforced Hydroxyapatite Coatings and their Interaction with Human Osteoblasts In Vitro, Biomaterials, 2007, 28, p 618-624

    Article  Google Scholar 

  18. K. Balani, Y. Chen, S.P. Harimkar, N.B. Dahotre, and A. Agarwal, Tribological Behaviour of Plasma-Sprayed Carbon Nanotube-Reinforced Hydroxyapatite Coating in Physiological Solution, Acta Biomater., 2007, 3, p 944-951

    Article  Google Scholar 

  19. M.F. Morks, Fabrication and Characterization of Plasma-Sprayed HA/SiO2 Coatings for Biomedical Application, J. Mech. Behav. Biomed. Mater., 2008, 1, p 105-111

    Article  Google Scholar 

  20. M.F. Morks, N.F. Fahim, and A. Kobayashi, Structure, Mechanical Performance and Electrochemical Characterization of Plasma Sprayed SiO2/Ti-Reinforced Hydroxyapatite Biomedical Coatings, Appl. Surf. Sci., 2008, 255, p 3426-3433

    Article  Google Scholar 

  21. R. Tomaszek, L. Pawlowski, L. Gengembre, J. Laureyns, and A. Le Maguer, Microstructure of Suspension Plasma Sprayed Multilayer Coatings of Hydroxyapatite and Titanium Oxide, Surf. Coat. Technol., 2007, 201, p 7432-7440

    Article  Google Scholar 

  22. M. Gaona, “Recubrimientos Biocompatibles Obtenidos Por proyección Térmica y Estudio In Vitro de la Función Osteoblástica”, Ph.D. Thesis, Universitat de Barcelona, 2007 (in Spanish)

  23. H. Melero, M. Torrell, J. Fernández, J.R. Gomes, and J.M. Guilemany, Tribological Characterization of Biocompatible HAp-TiO2 Coatings Obtained by High Velocity Oxy-Fuel Spray, Wear, 2013, 305, p 8-13

    Article  Google Scholar 

  24. H. Melero, J. Fernández, S. Dosta, and J.M. Guilemany, Caracterización de Nuevos Recubrimientos Biocompatibles de Hidroxiapatita-TiO2 Obtenidos Mediante Proyección Térmica de Alta Velocidad (Characterization of New Bioactive Coatings of Hydroxyapatite and TiO2 Obtained by High-Velocity Oxy-Fuel), Bol. Soc. Esp. Cerám. Vidrio, 2011, 50, p 59-64 (in Spanish)

    Article  Google Scholar 

  25. J.T. Seil and T.J. Webster, Antibacterial Zinc Oxide Nanoparticles in Polymer Biomaterial Composites, MRS Proc., 2011, 1316, p 128-133

    Article  Google Scholar 

  26. T. Xu and C.S. Xie, Tetrapod-Like Nano-particle ZnO/Acrylic Resin Composite and its Multi-function Property, Prog. Org. Coat., 2003, 46, p 297-301

    Article  Google Scholar 

  27. A. Bignon, F. Laurent, J. Goldnadel, J. Chevalier, G. Fantozzi, E. Viguier, T. Roger, G. Boivin, and D. Hartmann, ATLANTIK Genta, a New Concept of Gentamicin Loaded HAp/TCP Bone Substitute for Prophylactic Action: In Vitro Releasing Mechanisms Study, Key Eng. Mater., 2008, 361-363, p 1203-1206

    Article  Google Scholar 

  28. S. Radin, J.T. Campbell, P. Ducheyne, and J.M. Cuckler, Calcium Phosphate Ceramic Coatings as Carriers of Vancomycin, Biomaterials, 1997, 18, p 777-782

    Article  Google Scholar 

  29. J. Fernández, M. Gaona, and J.M. Guilemany, Tribological Study of Plasma Hydroxyapatite Coatings, Key Eng. Mater., 2004, 254-256, p 383-386

    Article  Google Scholar 

  30. J. Fernández, M. Gaona, and J.M. Guilemany, Effect of Heat Treatments on HVOF Hydroxyapatite Coatings, J. Therm. Spray Technol., 2007, 16, p 220-228

    Article  Google Scholar 

  31. R.A. Rosu, I. Bran, M. Popescu, and C. Opris, In Vitro Characterization of Hydroxyapatite Layers Deposited by APS and HVOF Thermal Spraying Methods, Ceram. Silik., 2012, 56, p 25-31

    Google Scholar 

  32. P.C. Maness, S. Smolinski, D.M. Blake, Z. Huang, E.J. Wolfrum, and W.A. Jacoby, Bactericidal Activity of Photocatalytic TiO2 Reaction: Toward An Understanding of its Killing Mechanism, Appl. Environ. Microbiol., 1999, 65, p 4094-4098

    Google Scholar 

  33. Y. Kikuchi, K. Sunada, T. Iyoda, K. Hashimoto, and A. Fujishima, Photocatalytic Bactericidal Effect of TiO2 Thin Films: Dynamic Species Responsible for the Effect, J Photochem. Photobiol. A, 1997, 106, p 51-56

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Melero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melero, H., Madrid, C., Fernández, J. et al. Comparing Two Antibacterial Treatments for Bioceramic Coatings at Short Culture Times. J Therm Spray Tech 23, 684–691 (2014). https://doi.org/10.1007/s11666-014-0057-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-014-0057-6

Keywords

Navigation