In-Flight Temperature and Velocity of Powder Particles of Plasma-Sprayed TiO2


This paper relates to the in-flight temperature and velocity of TiO2 particles, an integral part of the systematic research on atmospheric plasma spraying of the material. Initial powder feedstock (32-45 μm, 100% rutile phase) was introduced into the plasma jet. Six parameters were selected to represent the versatility of the plasma system and their respective influences were determined according to basic one-at-a-time and advanced Taguchi design of experiments combined with the analysis of variance analytical tool. It was found that the measured temperatures varied from 2121 to 2830 K (33% variation), while the velocities of the particles were altered from 127 to 243 m/s (91% variation). Gun net power was detected as the most influential factor with respect to the velocity of the TiO2 particles (an increase of 8.4 m/s per 1-kW increase in net power). Spray distance was determined to have a major impact on the in-flight temperature (a decrease of 10 mm in spray distance corresponds to a drop of 36 K). A significant decrease in both characteristics was detected for an increasing amount of powder entering the plasma jet: A drop of 7.1 K and 1.4 m/s was recorded per every +1 g/min of TiO2 powder.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    L.L. Hench, Bioceramics—from Concept to Clinic, J. Am. Ceram. Soc., 1991, 74(7), p 1487-1510

    Article  CAS  Google Scholar 

  2. 2.

    C. Larsson, P. Thomsen, J. Lausmaa, M. Rodahl, B. Kasemo, and L.E. Ericson, Bone Response to Surface Modified Titanium Implants: Studies on Electropolished Implants with Different Oxide Thicknesses and Morphology, Biomaterials, 1994, 15(13), p 1062-1074

    Article  CAS  Google Scholar 

  3. 3.

    N. Huang, Y.R. Chen, J.M. Luo, J. Yi, R. Lu, J. Xiao, Z.N. Xue, and X.H. Liu, In Vitro Investigation of Blood Compatibility of Ti with Oxide Layers of Rutile Structure, J. Biomater. Appl., 1994, 8(4), p 404-412

    Article  CAS  Google Scholar 

  4. 4.

    V. Sollazzo, F. Pezzetti, A. Scarano, A. Piattelli, L. Massari, G. Brunelli, and F. Carinci, Anatase Coating Improves Implant Osseointegration In Vivo, J. Craniofac. Surg., 2007, 18(4), p 806-810

    Article  Google Scholar 

  5. 5.

    I. Tsyganov, M.F. Maitz, E. Wieser, F. Prokert, E. Richter, and A. Rogozin, Structure and Properties of Titanium Oxide Layers Prepared by Metal Plasma Immersion Ion Implantation and Deposition, Surf. Coat. Technol., 2003, 174-175, p 591-596

    Article  CAS  Google Scholar 

  6. 6.

    H.K. Tsou, P.Y. Hsieh, M.H. Chi, C.J. Chung, and J.L. He, Improved Osteoblast Compatibility of Medical-Grade Polyetheretherketone Using Arc Ionplated Rutile/Anatase Titanium Dioxide Films for Spinal Implants, J. Biomed. Mater. Res. A, 2012, 100A(10), p 2787-2792

    Article  CAS  Google Scholar 

  7. 7.

    S. Forberg, Ceramic Containers for Spent Nuclear Fuel: On the Corrosion Resistance of Rutile, Adv. Ceramics, 1986, 20, p 321-327

    CAS  Google Scholar 

  8. 8.

    I. Tsyganov, M.F. Maitz, and E. Wieser, Blood Compatibility of Titanium-Based Coatings Prepared by Metal Plasma Immersion Ion Implantation, Deposition, Appl. Surf. Sci., 2004, 235(1-2), p 156-163

    Article  CAS  Google Scholar 

  9. 9.

    P. Fauchais, Understanding Plasma Spraying, J. Phys. D, 2004, 37(9), p R86-R108

    Article  CAS  Google Scholar 

  10. 10.

    P. Fauchais, M. Fukumoto, A. Vardelle, and M. Vardelle, Knowledge Concerning Splay Formation: An Invited Review, J. Therm. Spray. Technol., 2004, 13(3), p 337-360

    Article  CAS  Google Scholar 

  11. 11.

    P.I. Gouma and M.J. Mills, Anatase-to-Rutile Transformation in powders, J. Am. Ceram. Soc., 2001, 84(3), p 619-622

    Article  CAS  Google Scholar 

  12. 12.

    J. Cizek and K.A. Khor, Role of In-Flight Temperature, Velocity of Powder Particles on Plasma Sprayed Hydroxyapatite Coating Characteristics, Surf. Coat. Technol., 2012, 206(8-9), p 2181-2191

    Article  CAS  Google Scholar 

  13. 13.

    D.D. Frey, A Role for “One-Factor-at-a-Time” Experimentation in Parameter Design, Res. Eng. Des., 2003, 14(3), p 65-74

    Google Scholar 

  14. 14.

    G. Taguchi, Quality Engineering in Production Systems, McGraw-Hill, New York, 1988

    Google Scholar 

  15. 15.

    Y. Li and T. Ishigaki, Thermodynamic Analysis of Nucleation of Anatase, Rutile from TiO2 Melt, J. Cryst. Growth, 2002, 242(3-4), p 511-516

    Article  CAS  Google Scholar 

  16. 16.

    H. Fukanuma, N. Ohno, B. Sun, and R. Huang, In-Flight Particle Velocity Measurements with DPV-2000 in Cold Spray, Surf. Coat. Technol., 2006, 201(5), p 1935-1941

    Article  CAS  Google Scholar 

  17. 17.

    V. Srinivasan, A Critical Assessment of In-Flight Particle State During Plasma Spraying of YSZ, Its Implications on Coating Properties, Process Reliability, Stony Brook University, Stony Brook, NY, 2007

  18. 18.

    M.P. Planche, B. Normand, E. Suzon, and C. Coddet, The Relationships Between In-Flight Particles Characteristics, Coatings Properties Under Plasma Spraying Conditions, Thermal Spray 2001: New Surfaces for a New Millenium, ASM International, Materials Park, OH, 2001, p 771-777

  19. 19.

    P. Ctibor and M. Hrabovsky, Plasma Sprayed TiO2: The Influence of Power of an Electric Supply on Particle Parameters in the Flight, Character of Sprayed Coating, J. Eur. Ceram. Soc., 2010, 30(15), p 3131-3136

    Article  CAS  Google Scholar 

  20. 20.

    M. Vardelle, A. Vardelle, and P. Fauchais, Spray Parameters, Particle Behavior Relationships During Plasma Spraying, J. Therm. Spray. Technol., 1993, 2(1), p 79-91

    Article  CAS  Google Scholar 

  21. 21.

    K. Neufuss, J. Ilavsky, B. Kolman, J. Dubsky, P. Rohan, and P. Chraska, Variation of Plasma Spray Deposits Microstructure, Properties Formed by Particles Passing through Different Areas of Plasma Jet, Ceram.-Silikaty, 2001, 45(1), p 1-8

    CAS  Google Scholar 

  22. 22.

    J.C. Fang, W.J. Xu, Z.Y. Zhao, and H.P. Zheng, In-Flight Behaviors of ZrO2 Particle in Plasma Spraying, Surf. Coat. Technol., 2007, 201(9-11), p 5671-5675

    Article  CAS  Google Scholar 

  23. 23.

    S. Guessasma, G. Montavon, and C. Coddet, Velocity, Temperature Distributions of Alumina-Titania In-Flight Particles in the Atmospheric Plasma Spray Process, Surf. Coat. Technol., 2005, 192(1), p 70-76

    Article  CAS  Google Scholar 

  24. 24.

    A. Kucuk, R.S. Lima, and C.C. Berndt, Influence of Plasma Spray Parameters on In-Flight Characteristics of ZrO2-8 wt.% Y2O3 Ceramic Particles, J. Am. Ceram. Soc., 2001, 84(4), p 685-692

    Article  CAS  Google Scholar 

  25. 25.

    Z. Salhi, S. Guessasma, and N. Fenineche, Yttria-Stabilized Zirconia In-Flight Particle Characteristics Under Vacuum Plasma Spray Conditions, Vacuum, 2009, 83(11), p 1382-1387

    Article  CAS  Google Scholar 

Download references


The Project has been funded from the SoMoPro programme. Research leading to these results has received a financial contribution from the European Community within the Seventh Framework Programme (FP/2007-2013) under Grant Agreement No. 229603. The research is also co-financed by the South Moravian Region. The EC OP Project No. CZ.1.07./2.3.00/20.0197 is gratefully acknowledged.

Author information



Corresponding author

Correspondence to Jan Cizek.

Additional information

This article is an invited paper selected from presentations at the 5th Asian Thermal Spray Conference (ATSC 2012) and has been expanded from the original presentation. ATSC 2012 was held at the Tsukuba International Congress Center, Ibaraki, Japan, November 26-28, 2012, and was organized by the Japan Thermal Spray Society and the Asian Thermal Spray Society.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cizek, J., Khor, K.A. & Dlouhy, I. In-Flight Temperature and Velocity of Powder Particles of Plasma-Sprayed TiO2 . J Therm Spray Tech 22, 1320–1327 (2013).

Download citation


  • in-flight properties
  • plasma spray
  • rutile
  • Taguchi design
  • TiO2
  • titania