Skip to main content

Thermal Spray Maps: Material Genomics of Processing Technologies


There is currently no method whereby material properties of thermal spray coatings may be predicted from fundamental processing inputs such as temperature-velocity correlations. The first step in such an important understanding would involve establishing a foundation that consolidates the thermal spray literature so that known relationships could be documented and any trends identified. This paper presents a method to classify and reorder thermal spray data so that relationships and correlations between competing processes and materials can be identified. Extensive data mining of published experimental work was performed to create thermal spray property-performance maps, known as “TS maps” in this work. Six TS maps will be presented. The maps are based on coating characteristics of major importance; i.e., porosity, microhardness, adhesion strength, and the elastic modulus of thermal spray coatings.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11



Atmospheric plasma spray


American Society for Testing and Materials


Controlled atmosphere plasma spray


Cold spray

D-Gun® :

Detonation gun spray


Flame spray




Rockwell hardness C-scale


High-velocity oxygen fuel spray


High-velocity suspension flame spray


Low pressure plasma spray


Plasma-transferred wire arc spray


Radio frequency


Standoff distance


Suspension plasma spray


Solution precursor plasma spray


Tensile adhesion test


Thermal barrier coating


Thermal spray


Flame temperature and particle velocity


Twin Wire Arc


Vacuum plasma spray


Tungsten monocarbide


Tungsten carbide-cobalt


Water-stabilized plasma spray


Yttria-stabilized zirconia


  1. 1.

    J.R. Davis, Handbook of Thermal Spray Technology, ASM International, Materials Park, OH, 2004

    Google Scholar 

  2. 2.

    L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, Wiley, Chichester, 2008

    Book  Google Scholar 

  3. 3.

    R. McPherson, The Relationship Between the Mechanism of Formation, Microstructure and Properties of Plasma-Sprayed Coatings, Thin Solid Films, 1981, 83(3), p 297-310

    Article  CAS  Google Scholar 

  4. 4.

    S. Fantassi, M. Vardelle, A. Vardelle, and P. Fauchais, Influence of the Velocity of Plasma-Sprayed Particles on Splat Formation, J. Therm. Spray Technol., 1993, 2(4), p 379-384

    Article  CAS  Google Scholar 

  5. 5.

    M. Vardelle, A. Vardelle, and P. Fauchais, Spray Parameters and Particle Behavior Relationships During Plasma Spraying, J. Therm. Spray Technol., 1993, 2(1), p 79-91

    Article  CAS  Google Scholar 

  6. 6.

    P. Fauchais and G. Montavon, Plasma Spraying: From Plasma Generation to Coating Structure, Advances in Heat Transfer, vol. 40, Elsevier, Amsterdam, 2007, p 205-344

  7. 7.

    M.U. Schoop, An Improved Process of Applying Deposits of Metal or Metallic Compounds to Surfaces, U.K. Patent A.D. 21066, U. K. P. Office, 1912

  8. 8.

    Z.-K. Liu, and D.L. McDowell, Center for Computational Materials Design (CCMD) and Its Education Vision, Materials Science and Technology (MS&T) 2006: Fundamentals and Characterization, B. Fahrenholtz, A. Kimel, and P.E. Cantonwine, Eds., Cincinnati, OH, 2006, p 111-118

  9. 9.

    G.B. Olson, Computational Design of Hierarchically Structured Materials, Science, 1997, 277(5330), p 1237-1242

    Article  CAS  Google Scholar 

  10. 10.

    M.F. Ashby, Chapter 4—Material Property Charts, Materials Selection in Mechanical Design, 4th ed., Butterworth-Heinemann, Oxford, 2011, p 57-96

  11. 11.

    S. Saber-Samandari and C.C. Berndt, IFTHSE Global 21: Heat Treatment and Surface Engineering in the Twenty-First Century: Part 10—Thermal Spray Coatings: A Technology Review, Int. Heat Treat. Surf. Eng., 2010, 4(1), p 7-13

    Article  Google Scholar 

  12. 12.

    A. Papyrin, Cold Spray Technology, Adv. Mater. Process., 2001, 159(9), p 49-51

    CAS  Google Scholar 

  13. 13.

    Sulzer Metco, Thermal Spray Materials Guide, Sulzer Metco (US) Inc., Westbury, NY, 2012

  14. 14.

    Praxair Surface Technologies Inc., Powder Solution Catalog: Praxair and TAFA Thermal Spray Powders, Praxair Technology, Inc., USA, 2009

  15. 15.

    Amperit® Thermal Spray Powders, Surface Technology, H.C. Starck, Ed., H.C. Starck GmbH, Goslar, 2010

  16. 16.

    Flame Spray Technologies b.v., Flame Spray Technologies: Powders, Flame Spray Technologies b.v., Netherlands, 2008

  17. 17.

    M. Friis and C. Persson, Control of Thermal Spray Processes by Means of Process Maps and Process Windows, J. Therm. Spray Technol., 2003, 12(1), p 44-52

    Article  Google Scholar 

  18. 18.

    G. Dwivedi, T. Wentz, S. Sampath, and T. Nakamura, Assessing Process and Coating Reliability Through Monitoring of Process and Design Relevant Coating Properties, J. Therm. Spray Technol., 2010, 19(4), p 695-712

    Article  CAS  Google Scholar 

  19. 19.

    J. Ilavsky, G.G. Long, A.J. Allen, H. Herman, and C.C. Berndt, Use of Small-Angle Neutron Scattering for the Characterization of Anisotropic Structures Produced by Thermal Spraying, Ceramics—Silikaty, 1998, 42(3), p 81-89

    CAS  Google Scholar 

  20. 20.

    J. Matějíček, B. Kolman, J. Dubský, K. Neufuss, N. Hopkins, and J. Zwick, Alternative Methods for Determination of Composition and Porosity in Abradable Materials, Mater. Charact., 2006, 57(1), p 17-29

    Article  Google Scholar 

  21. 21.

    H.L. De Villiers Lovelock, Powder/Processing/Structure Relationships in WC-Co Thermal Spray Coatings: A Review of the Published Literature, J. Therm. Spray Technol., 1998, 7(3), p 357-373

    Article  Google Scholar 

  22. 22.

    A.A. Abdel-Samad, A.M.M. El-Bahloul, E. Lugscheider, and S.A. Rassoul, Comparative Study on Thermally Sprayed Alumina Based Ceramic Coatings, J. Mater. Sci., 2000, 35(12), p 3127-3130

    Article  CAS  Google Scholar 

  23. 23.

    M. Wang and L.L. Shaw, Effects of the Powder Manufacturing Method on Microstructure and Wear Performance of Plasma Sprayed Alumina-Titania Coatings, Surf. Coat. Technol., 2007, 202(1), p 34-44

    Article  CAS  Google Scholar 

  24. 24.

    R. McPherson, On the Formation of Thermally Sprayed Alumina Coatings, J. Mater. Sci., 1980, 15(12), p 3141-3149

    Article  CAS  Google Scholar 

  25. 25.

    P. Chráska, J. Dubsky, K. Neufuss, and J. Písacka, Alumina-Base Plasma-Sprayed Materials Part I: Phase Stability of Alumina and Alumina-Chromia, J. Therm. Spray Technol., 1997, 6(3), p 320-326

    Article  Google Scholar 

  26. 26.

    J. Ilavsky, C.C. Berndt, H. Herman, P. Chraska, and J. Dubsky, Alumina-Base Plasma-Sprayed Materials—Part II: Phase Transformations in Aluminas, J. Therm. Spray Technol., 1997, 6(4), p 439-444

    Article  CAS  Google Scholar 

  27. 27.

    ASTM C633-01(2008), Standard Test Method for Adhesion or Cohesion Strength of Thermal Spray Coatings, ASTM International, West Conshohocken, PA, 2008

  28. 28.

    K.A. Khor, C.S. Yip, and P. Cheang, Ti-6Al-4V/Hydroxyapatite Composite Coatings Prepared by Thermal Spray Techniques, J. Therm. Spray Technol., 1997, 6(1), p 109-115

    Article  CAS  Google Scholar 

  29. 29.

    R.C. Tucker, Jr., Structure Property Relationships in Deposits Produced by Plasma Spray and Detonation Gun Techniques, J. Vac. Sci. Technol., 1974, 11(4), p 725-734

    Article  CAS  Google Scholar 

  30. 30.

    H.D. Steffens, B. Wielage, and J. Drozak, Interface Phenomena and Bonding Mechanism of Thermally-Sprayed Metal and Ceramic Composites, Surf. Coat. Technol., 1991, 45(1-3), p 299-308

    Article  CAS  Google Scholar 

  31. 31.

    H. Baker, Properties of Metals, Metals Handbook, J.R. Davis, Ed., ASM International, Materials Park, OH, 1998.

  32. 32.

    R.L. Lehman, Overview of Ceramic Design and Process Engineering, Engineered Materials Handbook, 4, Ceramics and Glasses, ASM International, Materials Park, OH, 1991, p 30

  33. 33.

    A.F. Liu, Mechanics and Mechanisms of Fracture: An Introduction, ASM International, Materials Park, OH, 2005

    Google Scholar 

  34. 34.

    C. Li, A. Ohmori, and R. McPherson, The Relationship Between Microstructure and Young’s Modulus of Thermally Sprayed Ceramic Coatings, J. Mater. Sci., 1997, 32(4), p 997-1004

    Article  CAS  Google Scholar 

  35. 35.

    S.H. Leigh, C.K. Lin, and C.C. Berndt, Elastic Response of Thermal Spray Deposits Under Indentation Tests, J. Am. Ceram. Soc., 1997, 80(8), p 2093-2099

    Article  CAS  Google Scholar 

Download references


This work was supported under a Swinburne University Postgraduate Research Award. We also acknowledge support from the Defence Materials Technology Centre (DMTC).

Author information



Corresponding author

Correspondence to Andrew Siao Ming Ang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ang, A.S.M., Sanpo, N., Sesso, M.L. et al. Thermal Spray Maps: Material Genomics of Processing Technologies. J Therm Spray Tech 22, 1170–1183 (2013).

Download citation


  • adhesion
  • data mining
  • elastic modulus
  • genomic analysis
  • hardness
  • property map
  • sliding wear
  • spray parameters
  • thermal spray