Journal of Thermal Spray Technology

, Volume 22, Issue 6, pp 918–925 | Cite as

Effect of Bond Coats on Thermal Shock Resistance of Thermal Barrier Coatings Deposited Onto Polymer Matrix Composites Via Air Plasma Spray Process

Peer Reviewed


Thermal barrier coating systems with different bond coats were fabricated on polymer matrix composites via the air plasma spray process. During a thermal shock test at 400 °C, Zn and Al interlayers were helpful in improving the thermal shock resistance of coatings due to the low melting point. The coating system consisted of a soft zinc layer as a bond coat, and YSZ as a top coat exhibited the best thermal shock resistance, attributed to the lower residual stress and lower thermal stress in the Zn interlayer. The failure mechanism of the coating system was mainly ascribable to the residual stress derived from the deposition process, thermal stress, and further damage of the substrate.


failure interfaces polymers X-ray diffraction 


  1. 1.
    K. Steffens and H. Wihelm, Next Engine Generation: Materials, Surface Technology, Manufacturing Processes—What Comes After 2000?, MTU Aero Engines GmbH, Munchen, Germany, 2000, Internet edition:
  2. 2.
    X.Q. Cao, R. Vassen, W. Jungen, S. Schwartz, F. Tietz, and D. Stöver, Thermal Stability of Lanthanum Zirconate Plasma-Sprayed Coating, J. Am. Ceram. Soc., 2001, 84, p 2086-2090CrossRefGoogle Scholar
  3. 3.
    X.H. Zhong, Z.H. Xu, Y.F. Zhang, J.F. Zhang, and X.Q. Cao, Phase Stability and Thermophysical Properties of Neodymium Cerium Composite Oxide, J. Alloys Compd., 2009, 469, p 82-88CrossRefGoogle Scholar
  4. 4.
    Z.H. Xu, S.M. He, L.M. He, R.D. Mu, G.H. Huang, and X.Q. Cao, Novel Thermal Barrier Coatings Based on La2(Zr0.7Ce0.3)2O7/8YSZ Double-Ceramic-Layer Systems Deposited by Eelectron Beam Physical Vapor Deposition, J. Alloys Compd., 2011, 509, p 4273-4283CrossRefGoogle Scholar
  5. 5.
    S.K. Tiwari, J. Adhikary, T.B. Singh, and R. Singh, Preparation and Characterization of Sol-Gel Derived Yttria Doped Zirconia Coatings on AISI, 316L, Thin Solid Films, 2009, 517, p 4502-4508CrossRefGoogle Scholar
  6. 6.
    H. Li, K. Liang, L. Mei, S. Gu, and S. Wang, Oxidation Protection of Mild Steel by Zirconia Sol-Gel Process, Mater. Lett., 2001, 51, p 320-324CrossRefGoogle Scholar
  7. 7.
    M. Ivosevic, R. Knight, S.R. Kalidindi, G.R. Palmese, and J.K. Sutter, Adhensive/Cohesive Properties of Thermally Sprayed Functionally Graded Coatings for Polymer Matrix Composites, J. Therm. Spray Technol., 2005, 14, p 45-51CrossRefGoogle Scholar
  8. 8.
    A. Liu, M. Guo, M. Zhao, H. Ma, and S. Hu, Arc Sprayed Erosion-Resistant Coating for Carbon Fiber Reinforced Polymer Matrix Composite Substrates, Surf. Coat. Technol., 2006, 200, p 3073-3077CrossRefGoogle Scholar
  9. 9.
    F. Robitaille, M. Yandouzi, S. Hid, and B. Jodoin, Metallic Coating of Aerospace Carbon/Epoxy Composites by the Pulsed Gas Dynamic Spraying Process, Surf. Coat. Technol., 2009, 203, p 2954-2960CrossRefGoogle Scholar
  10. 10.
    J.K. Sutter, K. Miyoshi, C. Bowman, S.K. Naik, K. Ma, R. Sinatra, R. Cupp, R. Horan, and G. Leissler, Erosion Coatings for Polymer Matrix Composites in Propulsion Applications, High Perform. Polym., 2003, 15, p 421-440Google Scholar
  11. 11.
    G. Sun, X. He, J. Jiang, and Y. Sun, Parametric Study of Al and Al2O3 Ceramic Coatings Deposited by Air Plasma Spray onto Polymer Substrate, Appl. Surf. Sci., 2011, 257, p 7864-7870CrossRefGoogle Scholar
  12. 12.
    A. Liu, M. Guo, J. Gao, and M. Zhao, Influence of Bond Coat on Shear Adhesion Strength of Erosion and Thermal Resistant Coating for Carbon Fiber Reinforced Thermosetting Polyimide, Surf. Coat. Technol., 2006, 201, p 2696-2700CrossRefGoogle Scholar
  13. 13.
    D.J. Song, R.G. Wang, W.B. Liu, and X.D. He, Microstructure and Mechanical Properties of PbSn Alloys Deposited on Carbon Fiber Reinforced Epoxy Composites, J. Alloys Compd., 2010, 505, p 348-351CrossRefGoogle Scholar
  14. 14.
    S. Kuroda and T.W. Clyne, The Quenching Stress in Thermally Sprayed Coatings, Thin Solid Films, 1991, 200, p 49-66CrossRefGoogle Scholar
  15. 15.
    V. Luzin, K. Spencer, and M.-X. Zhang, Residual Stress and Thermo-Mechanical Properties of Cold Spray Metal Coatings, Acta Mater., 2011, 59, p 1259-1270CrossRefGoogle Scholar
  16. 16.
    L. Wang, Y. Wang, X.G. Sun, J.Q. He, Z.Y. Pan, and C.H. Wang, Finite Element Simulation of Residual Stress of Double-Ceramic-Layer La2Zr2O7/8YSZ Thermal Barrier Coatings Using Birth and Death Element Technique, Comput. Mater. Sci., 2012, 53, p 117-127CrossRefGoogle Scholar
  17. 17.
    J. Stokes and L. Looney, Residual Stress in HVOF Thermally Sprayed Thick Deposits, Surf. Coat. Technol., 2004, 177-178, p 18-23CrossRefGoogle Scholar
  18. 18.
    H. Sieglerschmidt, Bestimmung der Poissonschen Zahl μ Gewalzter Zinkbleche, Z. Metallk., 1932, 24, p 55-56Google Scholar
  19. 19.
    H.E. Boyer and T.L. Gall, Metal Handbook, Desk edition, ASM, Metals Park, OH, 1985Google Scholar
  20. 20.
    G. Arslan, R. Janssen, and N. Claussen, Processing and Characterisation of Three-Layer Alumina-Based Composites with Enhanced Damage Tolerance, J. Eur. Ceram. Soc., 2005, 25, p 3553-3561CrossRefGoogle Scholar

Copyright information

© ASM International 2013

Authors and Affiliations

  • Wenzhi Huang
    • 1
    • 2
    • 3
  • Yu Zhao
    • 2
    • 3
  • Xizhi Fan
    • 2
    • 3
  • Xiangsheng Meng
    • 1
    • 3
  • Ying Wang
    • 2
  • Xiaolong Cai
    • 2
  • Xueqiang Cao
    • 2
  • Zhen Wang
    • 1
  1. 1.State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina
  2. 2.State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina
  3. 3.Graduate School of the Chinese Academy of SciencesBeijingChina

Personalised recommendations