Skip to main content

Advertisement

Log in

Effects of Enthalpy-Enhancing Gas on Ionic Conductivity of Atmospheric Plasma-Sprayed 3.9YSZ Electrolyte for 45-75 μm Particles

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Enthalpy-enhancing gas is used to optimize the ionic conductivity of atmospheric plasma-sprayed 3.9 mol% yttria-stabilized zirconia (3.9YSZ) electrolyte. In the experiment, three hydrogen gas-flow rates were used to control the plasma energy. The size of the 3.9YSZ feedstock powder was sieved to be set in the range of 45-75 μm. When the hydrogen gas-flow rate was increased, the electrolyte became harder, and the sprayed surfaces became smoother. However, the lowest apparent porosity and the highest bulk density of the electrolyte were obtained at a hydrogen gas-flow rate of 7 L/min. A 3.9YSZ electrolyte with an ionic conductivity of 2860 µ(S/cm) and the lowest dissociation energy was obtained at 800 °C with a hydrogen gas-flow rate of 12 L/min. It was controlled by the intragrain conductivities. A higher hydrogen gas-flow rate enhanced the growth of columnar grains and suppressed the appearance of the monoclinic phase, which led to the greater intragrain conductivities. The increase in grain-boundary conductivities is closely related to the decrease in grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Kim, S. Park, J.M. Vohs, and R.J. Gorte, Direct Oxidation of Liquid Fuels in a Solid Oxide Fuel Cell, J. Electrochem. Soc., 2001, 148(7), p A693-A695

    Article  CAS  Google Scholar 

  2. C. Lu, W.L. Worrell, R.J. Gorte, and J.M. Vohs, SOFCs for Direct Oxidation of Hydrocarbon Fuels with Samaria-Doped Ceria Electrolyte, J. Electrochem. Soc., 2003, 150(3), p A354-A358

    Article  CAS  Google Scholar 

  3. R.J. Gorte and J.M. Vohs, Novel SOFC Anodes for the Direct Electrochemical Oxidation of Hydrocarbons, J. Catal., 2003, 216, p 477-486

    Article  CAS  Google Scholar 

  4. M.D. Gross, J.M. Vohs, and R.J. Gorte, A Strategy for Achieving High Performance with SOFC Ceramic Anodes, Electrochem. Solid-State Lett., 2007, 10(4), p B65-B69

    Article  CAS  Google Scholar 

  5. G. Kim, G. Corre, J.T.S. Irvine, J.M. Vohs, and R.J. Gorte, Engineering Composite Oxide SOFC Anodes for Efficient Oxidation of Methane, Electrochem. Solid-State Lett., 2008, 11(2), p B16-B19

    Article  CAS  Google Scholar 

  6. N.Q. Minh, Ceramic Fuel Cells, J. Am. Ceram. Soc., 1993, 76(3), p 563-588

    Article  CAS  Google Scholar 

  7. N. Kiratzis, P. Holtappels, C.E. Hatchwell, and J.T.S. Irvine, Preparation and Characterization of Copper/Yttria Titania Zirconia Cermets for Use as Possible Solid Oxide Fuel Cell Anodes, Fuel Cells, 2001, 1(3-4), p 211-218

    Article  CAS  Google Scholar 

  8. J.W. Fergus, Electrolytes for Solid Oxide Fuel Cells, J. Power Sources, 2006, 162, p 30-40

    Article  CAS  Google Scholar 

  9. H. Inaba and H. Tagawa, Ceria-Based Solid Electrolytes, Solid State Ion., 1996, 83, p 1-16

    Article  CAS  Google Scholar 

  10. M. Dudek and J. Molenda, Ceria-Yttria-Based Solid Electrolytes for Intermediate Temperature Solid Oxide Fuel Cell, Mater. Sci.-Pol., 2006, 24(1), p 45-52

    CAS  Google Scholar 

  11. D. Maland, C. Suciu, I. Warnhus, and A.C. Hoffmann, Sintering of 4YSZ (ZrO2 + 4 mol% Y2O3) Nanoceramics for Solid Oxide Fuel Cells (SOFCs), Their Structure and Ionic Conductivity, J. Eur. Ceram. Soc., 2009, 29(12), p 2537-2547

    Article  Google Scholar 

  12. B.D. White and O. Kesler, Implications of Electronic Short Circuiting in Plasma Sprayed Solid Oxide Fuel Cells on Electrode Performance Evaluation by Electrochemical Impedance Spectroscopy, J. Power Sources, 2008, 177, p 104-110

    Article  CAS  Google Scholar 

  13. L. Rose, O. Kesler, Z. Tang, and A. Burgess, Application of Sol Gel Spin Coated Yttria-Stabilized Zirconia Layers for the Improvement of Solid Oxide Fuel Cell Electrolytes Produced by Atmospheric Plasma Spraying, J. Power Sources, 2007, 167, p 340-348

    Article  CAS  Google Scholar 

  14. D. Waldbilling and O. Kesler, The Effect of Solids and Dispersant Loadings on the Suspension Viscosities and Deposition Rates of Suspension Plasma Sprayed YSZ Coatings, Surf. Coat. Technol., 2009, 203, p 2098-2101

    Article  Google Scholar 

  15. C.X. Li, C.J. Li, and L.J. Guo, Effect of Composition of NiO/YSZ Anode on the Polarization Characteristics of SOFC Fabricated by Atmospheric Plasma Spraying, Int. J. Hydrogen Energy, 2010, 35, p 2964-2969

    Article  CAS  Google Scholar 

  16. A. Ohmori and C.J. Li, Quantitative Characterization of the Structure of Plasma-Sprayed Al2O3 Coating by Using Copper Electroplating, Thin Solid Films, 1991, 201, p 241-252

    Article  CAS  Google Scholar 

  17. K.A. Khor, L.G. Yu, S.H. Chan, and X.J. Chen, Densification of Plasma Sprayed YSZ Electrolytes by Spark Plasma Sintering (SPS), J. Eur. Ceram. Soc., 2003, 23, p 1855-1863

    Article  CAS  Google Scholar 

  18. M. Omori, Sintering, Consolidation, Reaction and Crystal Growth by the Spark Plasma System (SPS), Mater. Sci. Eng. A, 2000, 287, p 183-188

    Article  Google Scholar 

  19. M. Scagliotti, F. Parmigiani, G. Samoggia, G. Lanzi, and D. Richon, Structural Properties of Plasma-Sprayed Zirconia-Based Electrolytes, J. Mater. Sci., 1988, 23, p 3764-3770

    Article  CAS  Google Scholar 

  20. C.J. Li, C.X. Li, and X.J. Ning, Performance of YSZ Electrolyte Layer Deposited by Atmospheric Plasma Spraying for Cermet-Supported Tubular SOFC, Vacuum, 2004, 73, p 699-703

    Article  CAS  Google Scholar 

  21. M. Lang, R. Henne, S. Schaper, and G. Schiller, Development and Characterization of Vacuum Plasma Spraying Thin Film Solid Oxide Fuel Cells, J. Therm. Spray Technol., 2001, 10(4), p 618-625

    Article  CAS  Google Scholar 

  22. M. Lang, T. Franco, G. Schiller, and N. Wagner, Electrochemical Characterization of Vacuum Plasma Sprayed Thin-Film Solid Oxide Fuel Cells (SOFC) for Reduced Operating Temperatures, J. Appl. Electrochem., 2002, 32, p 871-874

    Article  CAS  Google Scholar 

  23. N. Benoved and O. Kesler, A New Technique for the Rapid Manufacturing of Direct Oxidation Anodes for SOFC’s, Adv. Mater. Res., 2007, 15-17, p 287-292

    Article  CAS  Google Scholar 

  24. N. Benoved and O. Kesler, Air Plasma Spray Processing and Electrochemical Characterization of Cu-SDC Coatings for Use in Solid Oxide Fuel Cell Anodes, J. Power Sources, 2009, 193, p 454-461

    Article  CAS  Google Scholar 

  25. S. Takenoiri, N. Kadokawa, and K. Koseki, Development of Metallic Substrate Supported Planar Solid Oxide Fuel Cells Fabricated by Atmospheric Plasma Spraying, J. Therm. Spray Technol., 2000, 9(3), p 360-363

    Article  CAS  Google Scholar 

  26. L.J.H. Kuo, S.D. Vora, and S.C. Singhal, Plasma Spraying of Lanthanum Chromite Films for Solid Oxide Fuel Cell Interconnection Application, J. Am. Ceram. Soc., 1997, 80(3), p 589-593

    Article  CAS  Google Scholar 

  27. R. VaBen, D. Hathiramani, J. Mertens, V.A.C. Haanappel, and I.C. Vinke, Manufacturing of High Performance Solid Oxide Fuel Cells (SOFCs) with Atmospheric Plasma Spraying (APS), Surf. Coat. Technol., 2007, 202, p 499-508

    Article  Google Scholar 

  28. R. Hui, Z. Wang, O. Kesler, L. Rose, J. Jankovic, S. Yick, R. Maric, and D. Ghosh, Thermal Plasma Spraying for SOFCs: Applications, Potential Advantages, and Challenges, J. Power Sources, 2007, 170, p 308-323

    Article  CAS  Google Scholar 

  29. J. Harris and O. Kesler, Atmospheric Plasma Spraying Low-Temperature Cathode Materials for Solid Oxide Fuel Cells, J. Therm. Spray Technol., 2010, 19(1), p 328-335

    Article  CAS  Google Scholar 

  30. C.J. Li, A. Ohmori, and R. McPherson, The Relationship Between Microstructure and Young’s Modulus of Thermally Sprayed Ceramic Coatings, J. Mater. Sci., 1997, 32, p 997-1004

    Article  CAS  Google Scholar 

  31. E. Barsoukov, Impedance Spectroscopy Theory, Experiment, and Application, 2nd ed., E. Barsoukov and J.R. Macdonald, Eds., Wiley, Hoboken, 2005

  32. J.B. Bauerle, Study of Solid Electrolyte Polarization by a Complex Admittance Method, J. Phys. Chem. Solids, 1969, 30, p 2657-2670

    Article  CAS  Google Scholar 

  33. Surface Texture, ANSI B46.1, The American Society of Mechanical Engineer, 1978, p 27

  34. D. Matejka and B. Benko, Plasma Spraying of Metallic and Ceramic Materials, Wiley, Chichester, 1989

    Google Scholar 

  35. D. Maland, C. Suciu, I. Warnhus, and A.C. Hoffmann, Sintering of 4YSZ (ZrO2 + 4 mol% Y2O3) Nanoceramics for Solid Oxide Fuel Cells (SOFCs), Their Structure and Ionic Conductivity, J. Eur. Ceram. Soc., 2009, 29, p 2537-2547

    Article  Google Scholar 

  36. Y.Z. Xing, C.J. Li, C.X. Li, and G.J. Yang, Influence of Through-Lamella Grain Growth on Ionic Conductivity of Plasma-Sprayed Yttria-Stabilized Zirconia as an Electrolyte in Solid Oxide Fuel Cells, J. Power Sources, 2008, 176, p 31-38

    Article  CAS  Google Scholar 

  37. S.P.S. Badwal, Electrical Conductivity of Sc2O3-ZrO2 Compositions by 4-Probe d.c. and 2-Probe Complex Impedance Techniques, J. Mater. Sci., 1983, 18, p 3117-3127

    Article  CAS  Google Scholar 

  38. M. Filal, C. Petot, M. Mokchah, C. Chateau, and J.L. Carpentier, Ionic Conductivity of Yttrium-Doped Zirconia and the “Composite Effect”, Solid State Ion., 1995, 80, p 27-35

    Article  CAS  Google Scholar 

  39. P. Mondal, A. Klein, W. Jaegermann, and H. Hahn, Enhanced Specific Grain Boundary Conductivity in Nanocrystalline Y2O3-Stabilized Zirconia, Solid State Ion., 1999, 118, p 331-339

    Article  CAS  Google Scholar 

  40. C. Zhang, C.J. Li, G. Zhang, X.J. Ning, C.X. Li, H. Liao, and C. Coddet, Ionic Conductivity and Its Temperature Dependence of Atmospheric Plasma-Sprayed Yttria Stabilized Zirconia Electrolyte, Mater. Sci. Eng. B, 2007, 137, p 24-30

    Article  CAS  Google Scholar 

  41. R. Chiba, T. Ishii, and F. Yoshimura, Temperature Dependence of Ionic Conductivity in (1−x)ZrO2-(xy)Sc2O3-yYb2O3 Electrolyte Material, Solid State Ion., 1996, 91, p 249-256

    Article  CAS  Google Scholar 

  42. I. Kosacki, J.U. Anderson, Y. Mizutani, and K. Ukai, Nonstoichiometry and Electrical Transport in Sc-Doped Zirconia, Solid State Ion., 2002, 152-153, p 431-438

    Article  CAS  Google Scholar 

  43. M. Weller and H. Schubert, Internal Friction, Dielectric Loss, and Ionic Conductivity of Tetragonal Zirconia ZrO2-3% Y2O3 (Y-TZP), J. Am. Ceram. Soc., 1986, 69(7), p 573-577

    Article  CAS  Google Scholar 

  44. A. Cheikh, A. Madani, A. Touati, H. Boussetta, and C. Monty, Ionic Conductivity of Zirconia Based from Single Crystals to Nanostructured Polycrystals, J. Eur. Ceram. Soc., 2001, 21, p 1837-1841

    Article  CAS  Google Scholar 

  45. P.S. Manning, J.D. Sirman, R.A. De Souza, and J.A. Kilner, The Kinetics of Oxygen Transport in 9.5 mol% Single Crystal Yttria Stabilized Zirconia, Solid State Ion., 1997, 100, p 1-10

    Article  CAS  Google Scholar 

  46. C.L. Curtis, D.T. Gawne, and M. Priestnall, The Processing and Electrical Properties of Plasma-Sprayed Yttria-Zirconia, J. Mater. Sci., 1994, 29, p 3102-3106

    Article  CAS  Google Scholar 

  47. M. Yoshimura, M. Yashima, and T. Noma, Formation of Diffusionlessly Transformed Tetragonal Phases by Rapid Quenching of Melts in ZrO2-ROl.5 systems (R = rare earths), J. Mater. Sci., 1990, 25, p 2011-2016

    Article  CAS  Google Scholar 

  48. H. Toraya, M. Yoshimura, and S. Somiya, Calibration Curve for Quantitative Analysis of the Monoclinic-Tetragonal ZrO2 System by X-ray Diffraction, Commun. Am. Ceram. Soc., 1984, 67, p C-119-C-121

    Article  CAS  Google Scholar 

  49. H. Toraya, M. Yoshimura, and S. Somiya, Quantitative Analysis of Monoclinic-Stabilized Cubic ZrO2 Systems by X-ray Diffraction, Commun. Am. Ceram. Soc., 1984, 67, p C-183-C-184

    Article  CAS  Google Scholar 

  50. H.G. Scott, Phase Relationships in the Zirconia-Yttria System, J. Mater. Sci., 1975, 10, p 1527-1535

    Article  CAS  Google Scholar 

  51. J. Moon, H. Choi, and C. Lee, Cooling Rate Effects on the Phase Transformation of ZrO2 Base Thermal Barrier Coatings Coated by APS, J. Ceram. Process. Res., 2000, 1(1), p 69-73

    Google Scholar 

  52. N. Bonanos, R.K. Slotwinski, B.C.H. Steele, and E.P. Butler, Electrical Conductivity/Microstructural Relationships in Aged CaO and CaO + MgO Partially-Stabilized Zirconia, J. Mater. Sci., 1984, 19, p 785-793

    Article  CAS  Google Scholar 

  53. X. Guo, Physical Origin of the Intrinsic Grain-Boundary Resistivity of Stabilized-Zirconia: Role of the Space-Charge Layers, Solid State Ion., 1995, 81, p 235-242

    Article  CAS  Google Scholar 

  54. S.P.S. Badwal, F.T. Ciacchi, S. Rajendran, and J. Drennan, An Investigation of Conductivity, Microstructure and Stability of Electrolyte Compositions in the System 9 mol% (Sc2O3-Y2O3)-ZrO2(Al2O3), Solid State Ion., 1998, 109, p 167-186

    Article  CAS  Google Scholar 

  55. C. Haering, A. Roosen, and H. Schichl, Degradation of the Electrical Conductivity in Stabilised Zirconia Systems. Part I: Yttria-Stabilised Zirconia, Solid State Ion., 2005, 176, p 253-259

    Article  CAS  Google Scholar 

  56. B. Butz, P. Kruse, H. Stormer, D. Gerthsen, A. Muller, A. Wber, and E. Ivers-Tiffee, Correlation Between Microstructure and Degradation in Conductivity for Cubic Y2O3-Doped ZrO2, Solid State Ion., 2006, 177, p 3275-3284

    Article  CAS  Google Scholar 

  57. M. Hattori, Y. Takeda, Y. Sakaki, A. Nakanishi, S. Ohara, K. Mukai, J.H. Lee, and T. Fukui, Effect of Aging on Conductivity of Yttria Stabilized Zirconia, J. Power Sources, 2004, 126, p 23-27

    Article  CAS  Google Scholar 

  58. M. Han, X. Tang, H. Yin, and S. Peng, Fabrication, Microstructure and Properties of a YSZ Electrolyte for SOFCs, J. Power Sources, 2007, 165, p 757-763

    Article  CAS  Google Scholar 

  59. X.J. Chen, K.A. Khor, S.H. Chan, and L.G. Yu, Influence of Microstructure on the Ionic Conductivity of Yttria-Stabilized Zirconia Electrolyte, Mater. Sci. Eng. A, 2002, 335, p 246-252

    Article  Google Scholar 

  60. X.J. Chen, K.A. Khor, S.H. Chan, and L.G. Yu, Overcoming the Effect of Contaminant in Solid Oxide Fuel Cell (SOFC) Electrolyte: Spark Plasma Sintering (SPS) of 0.5 wt.% Silica-Doped Yttria-Stabilized Zirconia (YSZ), Mater. Sci. Eng. A, 2004, 374, p 64-71

    Article  Google Scholar 

  61. B.D. Culity, Elements of X-ray Diffraction, Addison-Wesley, Reading, 1978

    Google Scholar 

Download references

Acknowledgments

This study was funded by the Taiwan’s National Science Council (Grant NSC 101-3113-E-006-009). The authors gratefully acknowledge the support from the Aero Engine Factory/Aerospace Industrial Development Corporation, Taiwan, and also sincerely thank Professor M. H. Hon for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hann-Pyng Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, HP., Fung, KZ. Effects of Enthalpy-Enhancing Gas on Ionic Conductivity of Atmospheric Plasma-Sprayed 3.9YSZ Electrolyte for 45-75 μm Particles. J Therm Spray Tech 22, 1014–1023 (2013). https://doi.org/10.1007/s11666-013-9935-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-013-9935-6

Keywords

Navigation