Skip to main content
Log in

Nanocrystalline Surface Layer on AISI 52100 Steel Induced by Supersonic Fine Particles Bombarding

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Surface treatment of AISI 52100 steel by supersonic fine particles bombarding (SFPB) was studied in this article. The surface topography, morphology of the surface layer, and microhardness distribution of the surface layer have been investigated using a surface profiler system, a scanning electron microscopy (SEM), and a microvickers hardness tester. The microstructure, phase composition, and residual stress distribution of the surface layer in AISI 52100 steel after the SFBP treatment have been characterized by means of x-ray diffraction, SEM, and transmission electron microscopy. The results showed that a nanocrystalline surface (NS) layer was formed on the top surface of the SFBP-treated AISI 52100 steel samples. The NS layer is about 2 μm in thickness with a surface roughness of R a = 1.2 μm, R y = 6.7 μm, R z = 6.0 μm. Phase transitions occurred in the surface of the SFBP-treated samples. Residual compressive stress is obtained at the surface of the SFBP-treated samples. The maximum value of compressive stress appears at the outermost of the surface, and the affection region of the whole surface is about 60 μm in thickness. A hardened surface layer has been fabricated in the AISI 52100 steel. The thickness of the hardened surface layer is about 70 μm. The maximum value of hardness occurs at the depth of 20 μm from the outermost surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Bagherifard, F. Pariente, R. Ghelichi, and M. Guagliano, Fatigue Properties of Nano Crystallized Surfaces Obtained by High Energy Shot Peening, Proc. Eng., 2010, 2, p 1683-1690

    Article  Google Scholar 

  2. H. Gleiter, Nanocrystalline Materials, Prog. Mater. Sci., 1988, 33, p 223-315

    Article  Google Scholar 

  3. C. Suryanarayana, Nanocrystalline Materials, Int. Mater. Rev., 1995, 40, p 41-64

    Article  CAS  Google Scholar 

  4. K. Lu and J. Lu, Nanostructured Surface Layer on Metallic Materials Induced by Surface Mechanical Attrition Treatment, Mater. Sci. Eng. A, 2004, 375-377, p 38-45

    Article  Google Scholar 

  5. D.G. Morris, Mechanical Behaviour of Nanostructured Materials, Trans Tech Publications, Zurich, 1998, p 70-72

    Google Scholar 

  6. S.X. McFadden, R.S. Mishra, R.Z. Valiev, A.P. Zhilyaev, and A.K. Mukherjee, Low Temperature Superplasticity in Nanocrystalline Nickel and Metal Alloys, Nature, 1999, 298, p 684-686

    Google Scholar 

  7. L. Lu, M.L. Sui, and K. Lu, Superplastic Extensibility of Nanocrystalline Copper at Room Temperature, Science, 2000, 287, p 1463-1466

    Article  CAS  Google Scholar 

  8. K. Dai and L. Shaw, Analysis of Fatigue Resistance Improvements via Surface Severe Plastic Deformation, Int. J. Fatigue, 2008, 3, p 1398-1408

    Article  Google Scholar 

  9. S. Bagherifard, I. Fernandez-Pariente, R. Ghelichi, and M. Guagliano, Fatigue Behavior of Steel Notched Specimens with Nanocrystallized Surface Obtained by Severe Shot Peening, Mater. Des., 2013, 45, p 497-503

    Article  CAS  Google Scholar 

  10. T.S. Price, P.H. Shipway, and D.G. McCartney, Production of Titanium Deposits by Cold-Gas Dynamic Spray: Numerical Modeling and Experimental Characterization, J. Therm. Spray Technol., 2006, 15, p 507-512

    Article  Google Scholar 

  11. R. Ghelichi, D. MacDonald, S. Bagherifard, H. Jahed, M. Guagliano, and B. Jodoin, Microstructure and Fatigue Behavior of Cold Spray Coated Al5052, Acta Mater., 2012, 60, p 6555-6561

    Article  CAS  Google Scholar 

  12. E. Sansoucy, G.E. Kim, A.L. Moran, and B. Jodoin, Mechanical Characteristics of Al-Co-Ce Coatings Produced by the Cold Spray Process, J. Therm. Spray Technol., 2007, 16, p 651-660

    Article  Google Scholar 

  13. G.B. Li, J. Chen, and D.L. Guan, Friction and Wear Behaviors of Nanocrystalline Surface Layer of Medium Carbon Steel, Tribol Int., 2010, 43, p 2216-2221

    Article  CAS  Google Scholar 

  14. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk Nanostructured Materials from Severe Plastic Deformation, Prog. Mater. Sci., 2000, 45, p 103-189

    Article  CAS  Google Scholar 

  15. S. Bagherifard and M. Guagliano, Review of Shot Peening Processes to Obtain Nano Crystalline Surfaces in Metal Alloys, Surf. Eng., 2009, 25, p 3-14

    Article  Google Scholar 

  16. S. Bagherifard and M. Guagliano, Fatigue Behaviour of a Low-Alloy Steel with a Nanostructured Surface Obtained by Severe Shot Peening, Eng. Fract. Mech., 2012, 81, p 56-68

    Article  Google Scholar 

  17. S. Bagherifard, R. Ghelichi, and M. Guagliano, A Numerical Model of Severe Shot Peening (SSP) to Predict the Generation of a Nanostructured Surface Layer of Material, Surf. Coat. Technol., 2010, 204(24), p 4081-4090

    Article  CAS  Google Scholar 

  18. T.Y. Xiong, Z.W. Liu, Z.C. Li, J. Wu, H.Z. Jin, and T.F. Li, Novel Surface Treatment Technology by supersonic Fine Particles Bambarding, Cailiao Daobao, 2003, 17, p 69-71

    Google Scholar 

  19. Y.L. Liu, “Microstructure and Properties of 40Cr Steel with Supersonic Particles Bombarding Treatment,” Ph.D. dissertation, Chinese Academy of Sciences, Shenyang, 2000

  20. A. Papyrin, The Development of the Cold Spray Process, Cold Spray Technology (CST), Albuquerque, 2006

  21. R. Ghelichi, S. Bagherifard, M. Guagliano, and M. Verani, Numerical Simulation of Cold Spray Coating, Surf. Coat. Technol., 2011, 205, p 5294-5301

    Article  CAS  Google Scholar 

  22. V. Champagne, The Cold Spray Materials Deposition Process, Fundamentals and Application, Woodhead Publishing, Cambridge, 2007

  23. W.L. Luan and S.D. Tu, Recent Trends on Surface Modification Technology of Shot Peening, China Mech. Eng., 2005, 16, p 1405-1409

    Google Scholar 

  24. N.R. Tao, M.L. Sui, J. Lu, and K. Lu, Surface Nanocrystallization of Iron Induced by Ultrasonic Shot Peening, Nanostruct. Mater., 1999, 11, p 433-440

    Article  CAS  Google Scholar 

  25. A. Ramesh, S.N. Melkote, L.F. Allard, L. Riester, and T.R. Watkins, Analysis of White Layers Formed in Hard Turning of AISI, 52100 Steel, Mater. Sci. Eng. A, 2005, 390, p 88-97

    Article  Google Scholar 

  26. Z.Q. Wu, Xiandai Jingti Xue, Vol II, Chinese Science and Technology University, Hefei, 1992, p 9

    Google Scholar 

  27. W.L. Yan, L. Fang, K. Sun, and Y.H. Xu, Effect of Surface Work Hardening on Wear Behavior of Hadfield Steel, Mater. Sci. Eng. A, 2007, 460-461, p 542-549

    Article  Google Scholar 

  28. V. Schulze, Modern Mechanical Surface Treatment, States, Stability, Effects,, Wiley, Weinheim, 2006

    Google Scholar 

  29. T. Wang, D.P. Wang, G. Liu, B.M. Gong, and N.X. Song, Investigations on the Nanocrystallization of 40Cr Using Ultrasonic Surface Rolling Processing, Appl. Surf. Sci., 2008, 255, p 1824-1829

    Article  CAS  Google Scholar 

  30. R. Mening, V. Schulze, and O. Vohringer, Optimized Warm Peening of the Quenched and Tempered Steel AISI, 4140, Mater. Sci. Eng. A, 2002, 335, p 198-206

    Article  Google Scholar 

Download references

Acknowledgments

The financial support of the National Natural Science Foundation of China (No. 50902031) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianying Xiong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, L., Lao, Y., Xiong, T. et al. Nanocrystalline Surface Layer on AISI 52100 Steel Induced by Supersonic Fine Particles Bombarding. J Therm Spray Tech 22, 1007–1013 (2013). https://doi.org/10.1007/s11666-013-9934-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-013-9934-7

Keywords

Navigation