Skip to main content

Advertisement

Log in

Increased Lifetime for Biomass and Waste to Energy Power Plant Boilers with HVOF Coatings: High Temperature Corrosion Testing Under Chlorine-Containing Molten Salt

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Heat exchanger surfaces of waste to energy and biomass power plant boilers experience often severe corrosion due to very aggressive components in the used fuels. High velocity oxy-fuel (HVOF) coatings offer excellent protection for boiler tubes against high temperature corrosion due to their high density and good adherence to the substrate material. Several thermal spray coatings with high chromium content were sprayed with HVOF technique. Their mechanical properties and high temperature corrosion resistance were tested and analyzed. The coating materials included NiCr, IN625, Ni-21Cr-10W-9Mo-4Cu, and iron-based partly amorphous alloy SHS9172 (Fe-25Cr-15W-12Nb-6Mo). High temperature corrosion testing was performed in NaCl-KCl-Na2SO4 salt with controlled H2O atmosphere at 575 and 625 °C. The corrosion test results of the coatings were compared to corrosion resistance of tube materials (X20, Alloy 263 and Sanicro 25).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. L. Baxter, Biomass-Coal Co-Combustion: Opportunity for Affordable Renewable Energy, Fuel, 2005, 84, p 1295-1302

    Article  CAS  Google Scholar 

  2. H.P. Nielsen, F.J. Frandsen, K. Dam-Johansen, and L.L. Baxter, The Implications of Chlorine-Associated Corrosion on the Operation of Biomass-Fired Boilers, Prog. Energy Combust. Sci., 2000, 26, p 283-298

    Article  CAS  Google Scholar 

  3. F.J. Frandsen, Utilizing Biomass and Waste for Power Production—A Decade of Contributing to the Understanding, Interpretation and Analysis of Deposits and Corrosion Products, Fuel, 2005, 84, p 1277-1294

    Article  Google Scholar 

  4. K. Persson, M. Broström, J. Carlsson, A. Nordin, and R. Backman, High Temperature Corrosion in a 65 MW Waste to Energy Plant, Fuel Process. Technol., 2007, 88, p 1178-1182

    Article  CAS  Google Scholar 

  5. M. Montgomery, T. Vilhelmsen, and S.A. Jensen, Potential High Temperature Corrosion Problems Due to Co-Firing of Biomass and Fossil Fuels, Mater. Corros., 2008, 59(10), p 783-793

    Article  CAS  Google Scholar 

  6. N. Otsuka, Chemistry and Melting Characteristics of Fireside Deposits Taken From Boiler Tubes in Waste Incinerators, Corros. Sci., 2011, 53, p 2269-2276

    Article  CAS  Google Scholar 

  7. M.J. Schofield, Corrosion, Plant Engineer’s Reference Book, 2nd ed., D.A. Snow, Ed., Elsevier, Amsterdam, 2002, 9 p

  8. A. Valarezo, W.B. Choi, W. Chi, A. Gouldstone, and S. Sampath, Process Control and Characterization of NiCr Coatings by HVOF-DJ2700 System: A Process Map Approach, J. Therm. Spray Technol., 2010, 19(5), p 852-865

    Article  CAS  Google Scholar 

  9. H.J. Grabke, E. Reese, and M. Spiegel, The Effect of Chlorides, Hydrogen Chloride and Sulphur Dioxide in the Oxidation of Steels Below Deposits, Corros. Sci., 1995, 37(7), p 1023-1043

    Article  CAS  Google Scholar 

  10. T. Ishitsuka and K. Nose, Stability of Protective Oxide Films in Waste Incineration Environment-Solubility Measurements of Oxides in Molten Chlorides, Corros. Sci., 2002, 44(2), p 247-263

    Article  CAS  Google Scholar 

  11. M. Spiegel, Salt Melt Induced Corrosion of Metallic Materials in Waste Incineration Plants, Mater. Corros., 1999, 50, p 373-393

    Article  CAS  Google Scholar 

  12. H.P. Michelsen, F. Frandsen, K. Dam-Johansen, and O.H. Larsen, Deposition and High Temperature Corrosion in a 10 MW Straw Fired Boiler, Fuel Process. Technol., 1998, 54, p 95-108

    Article  CAS  Google Scholar 

  13. P. Vainikka, D. Bankiewicz, A. Frantsi, J. Silvennoinen, J. Hannula, P. Yrjas, and M. Hupa, High Temperature Corrosion of Boiler Waterwalls Induced by Chlorides and Bromides. Part 1: Occurrence of the Corrosive Ash Forming Elements in a Fluidised Bed Boiler Co-Firing Solid Recovered Fuel, Fuel, 2011, 90, p 2055-2063

    Article  CAS  Google Scholar 

  14. P. Viklund, R. Pettersson, A. Hjörnhede, P. Henderson, and P. Sjövall, Effect of Sulphur Containing Additive on Initial Corrosion of Superheater Tubes in Waste Fired Boiler, Corros. Eng. Sci. Technol., 2009, 44(3), p 234-240

    Article  CAS  Google Scholar 

  15. M. Aho, P. Yrjas, R. Taipale, M. Hupa, and J. Silvennoinen, Reduction of Superheater Corrosion by Co-Firing Risky Biomass with Sewage Sludge, Fuel, 2010, 89, p 2376-2386

    Article  CAS  Google Scholar 

  16. H.J. Grabke, M. Spiegel, and A. Zahs, Role of Alloying Elements and Carbides in the Chlorine-Induced Corrosion of Steels and Alloys, Mater. Res., 2004, 7(1), p 89-95

    Article  CAS  Google Scholar 

  17. Y. Kawahara, High Temperature Corrosion Mechanisms and Effect of Alloying Elements for Materials Used in Waste Incineration Environment, Corros. Sci., 2002, 44, p 223-245

    Article  CAS  Google Scholar 

  18. Y.S. Li, M. Spiegel, and S. Shimada, Corrosion Behaviour of Various Model Alloys With NaCl-KCl Coating, Mater. Chem. Phys., 2005, 93, p 217-223

    Article  CAS  Google Scholar 

  19. B.-J. Skrivfars, R. Backman, M. Hupa, K. Salmenoja, and E. Vakkilainen, Corrosion of Superheater Steel Materials under Alkali Salt Deposits Part 1: The Effect of Salt Deposit Composition and Temperature, Corros. Sci., 2008, 50, p 1274-1282

    Article  Google Scholar 

  20. M.A. Uusitalo, P.M.J. Vuoristo, and T.A. Mäntylä, High Temperature Corrosion of Coatings and Boiler Steels below Chlorine-Containing Salt Deposits, Corros. Sci., 2004, 46, p 1311-1331

    Article  CAS  Google Scholar 

  21. S. Paul and M.D.F. Harvey, Corrosion Testing of Ni Alloy HVOF Coatings in High Temperature Environments for Biomass Applications, J. Therm. Spray Technol., 2013, 22, p 316-327

    Article  CAS  Google Scholar 

  22. S.S. Chatha, H.S. Sidhu, and B.S. Sidhu, High Temperature Hot Corrosion Behaviour of NiCr and Cr3C2-NiCr Coatings on T91 Boiler Steel in an Aggressive Environment at 750 °C, Surf. Coat. Technol., 2012, 206(19-20), p 3839-3850

    Article  CAS  Google Scholar 

  23. T.S. Sidhu, S. Prakash, and R.D. Agrawal, Hot Corrosion Performance of a NiCr Coated Ni-Based Alloy, Scr. Mater., 2006, 55, p 179-182

    Article  CAS  Google Scholar 

  24. M. Oksa, S. Tuurna, and T. Varis, High Temperature Corrosion Resistance of HVOF Coatings in a NaCl-KCl-Na2SO4 Salt, Proceedings of EUROCORR 2012, September 9-13 (Stockholm, Sweden), European Federation of Corrosion, 2012, 12 p

  25. M. Oksa, T. Varis, T. Suhonen, and M. Jokipii, Optimizing NiCr Thermal Spray Coating with Process Map Methodology for High Temperature Power Plant Boiler Application, Proceedings of International Thermal Spray Conference, May 21-24 (Houston, Texas, USA), ASM International, 2012, 6 p

  26. A.B. Tomkings, J.R. Nicholls, D.G. Robertson, EC Report, EUR 19479 EN, Discontinuous Corrosion Testing in High Temperature Gaseous Atmospheres (TESTCORR), London, Directorate-General for Research, 2001

  27. S. Kamnis and S. Gu, 3-D Modelling of Kerosene-Fuelled HVOF Thermal Spray Gun, Chem. Eng. Sci., 2006, 61, p 5427-5439

    Article  CAS  Google Scholar 

  28. D. Zhang, S.J. Harris, and D.G. McCartney, Microstructure Formation and Corrosion Behaviour in HVOF-Sprayed Inconel 625 Coatings, Mater. Sci. Eng. A, 2003, 344, p 45-56

    Article  Google Scholar 

  29. L. Intiso, L.-G. Johansson, S. Canovic, S. Bellini, J.-E. Svensson, and M. Halvarsson, Oxidation Behaviour of Sanicro 25 (42Fe22Cr25NiWCuNbN) in O2/H2O Mixture at 600 °C, Oxid. Met., 2012, 77, p 209-235

    Article  CAS  Google Scholar 

  30. K. Nakagawa and Y. Matsunaga, The Effect of Chemical Composition of Ash Deposit on the Corrosion of Boiler Tubes in Waste Incinerators, Mater. Sci. Forum, 1997, 251-254, p 535-542

    Article  CAS  Google Scholar 

  31. M.C. Galetz, J.T. Bauer, M. Schutze, M. Noguchi, C. Takatoh, and H. Cho, The Influence of Copper in Ash Deposits on the Corrosion of Boiler Tube Alloys for Waste-to-Energy Plants, Mater. Corros., 2012, 63, p 1-8

    Google Scholar 

  32. S. Enestam, D. Bankiewicz, J. Tuiremo, K. Mäkelä, and M. Hupa, Are NaCl and KCl Equally Corrosive on Superheater Materials of Steam Boilers?, Fuel, 2013, 104, p 294-306

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Mr. Mika Jokipii and Mr. Jarkko Metsäjoki are greatly acknowledged for their expertise. The authors would like to acknowledge the financial support of FP7 project NextGenPower—Meeting the Materials and Manufacturing Challenge for Ultra High Efficiency PF Power Plants with CCS, and all the partners involved.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Oksa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oksa, M., Tuurna, S. & Varis, T. Increased Lifetime for Biomass and Waste to Energy Power Plant Boilers with HVOF Coatings: High Temperature Corrosion Testing Under Chlorine-Containing Molten Salt. J Therm Spray Tech 22, 783–796 (2013). https://doi.org/10.1007/s11666-013-9928-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-013-9928-5

Keywords

Navigation