Skip to main content

Resistance of Coatings for Boiler Components of Waste-to-Energy Plants to Salt Melts Containing Copper Compounds

Abstract

The accelerating effect of heavy metal compounds on the corrosive attack of boiler components like superheaters poses a severe problem in modern waste-to-energy plants (WTPs). Coatings are a possible solution to protect cheap, low alloyed steel substrates from heavy metal chloride and sulfate salts, which have a relatively low melting point. These salts dissolve many alloys, and therefore often are the limiting factor as far as the lifetime of superheater tubes is concerned. In this work the corrosion performance under artificial salt deposits of different coatings, manufactured by overlay welding, thermal spraying of self-fluxing as well as conventional systems was investigated. The results of our studies clearly demonstrate the importance of alloying elements such as molybdenum or silicon. Additionally, the coatings have to be dense and of a certain thickness in order to resist the corrosive attack under these severe conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. P. Rademakers, W. Hesseling, and J. van de Wetering, “Review on Corrosion in Waste Incinerators, and Possible Effect of Bromine,” TNO Industrial Technology, Report, 2002

  2. C.C.Y. Chan and D.W. Kirk, Behaviour of Metals Under the Conditions of Roasting MSW Incinerator Fly Ash with Chlorinating Agents, J. Hazard. Mater., 1999, 64(1), p 75-89

    Article  CAS  Google Scholar 

  3. S. Biollaz, C. Ludwig, M. Beckmann, M. Davisovic, and T. Jentsch, Volatility of Zn and CU in waste incineration: radio-tracer experiments on a pilot incinerator, Proceedings Incineration and Thermal Treatment Technologies, Portland, USA, 2000

  4. C. Ferreira, A. Ribeiro, and L. Ottosen, Possible Applications for Municipal Solid Waste Fly Ash, J. Hazard. Mater., 2003, 96(2-3), p 201-216

    Article  CAS  Google Scholar 

  5. L.S. Morf, P.H. Brunner, and S. Spaun, Effect of Operating Conditions and Input Variations on the Partitioning of Metals in a Municipal Solid Waste Incinerator, Waste Manage. Res., 2000, 18(1), p 4-15

    CAS  Google Scholar 

  6. S.H. Lee, N. Themelis, and M. Castaldi, High-Temperature Corrosion in Waste-to-Energy Boilers, J. Therm. Spray Technol., 2007, 16(1), p 104-110

    Article  CAS  Google Scholar 

  7. M.C. Galetz, J.T. Bauer, M. Schütze, M. Noguchi, C. Takatoh, and H. Cho, The Influence of Copper in Ash Deposits on the Corrosion of Boiler Tube Alloys for Waste-to-Energy Plants, Mater. Corros., 2012, doi:10.1002/maco.201206787

    Google Scholar 

  8. C.M. Fontana, E. Gorin, G.A. Kidder, and C.S. Meredith, Chlorination of Methane with Copper Chloride Melts, Ind. Eng. Chem., 1951, 44(2), p 363-368

    Article  Google Scholar 

  9. M. Spiegel, A. Zahs, and H.J. Grabke, Fundamental Aspects of Chlorine Induced Corrosion in Power Plants, Mater. High Temp., 2003, 20, p 153

    Article  CAS  Google Scholar 

  10. J. Bertholt, “Metal Body with Metallic Protective Coating,” EP2113578A2, 2008

  11. A.J. Chandler, T.T. Eighmy, J. Hartlén, O. Hjelmar, D.S. Kosson, S.E. Sawell, H.A. Van der Sloot, and J. Vehlow, Municipal Solid Waste Incinerator Residues (Studies in Environmental Science), Vol 67, Elsevier, Amsterdam, 1997

    Google Scholar 

  12. S. Deshpande, A. Kulkarni, S. Sampath, and H. Herman, Application of Image Analysis for Characterization of Porosity in Thermal Spray Coatings and Correlation with Small Angle Neutron Scattering, Surf. Coat. Technol., 2004, 187, p 6-16

    Article  CAS  Google Scholar 

  13. D.B. Fowler, W. Riggs, and J.C. Russ, Inspecting Thermal Sprayed Coatings, Adv. Mater. Process., 1990, 11, p 41-52

    Google Scholar 

  14. I.A. Suleiman, J.C. Mackie, E.M. Kennedy, M.W. Radny, and B.Z. Dlugogorski, Quantum Chemical Study of Copper (II) Chloride and the Deacon Reaction, Chem. Phys. Lett., 2011, 501, p 215-220

    Article  CAS  Google Scholar 

  15. M. Spiegel, Salt Melt Induced Corrosion of Metallic Materials in Waste Incineration Plants, Mater. Corros., 1999, 50, p 373-393

    Article  CAS  Google Scholar 

  16. D. Bankiewicz, S. Enestam, P. Yrjas, and M. Hupa, Experimental Studies of Zn and Pb Induced High Temperature Corrosion of Two Commercial Boiler Steels, Fuel Process. Technol., 2013, 105, p 89–97

    Google Scholar 

  17. J. Adamiec, High Temperature Corrosion of Power Boiler Components Cladded with Nickel Alloys, Mater. Charact., 2009, 60(10), p 1093-1099

    Article  CAS  Google Scholar 

  18. W. Spiegel, T. Herzog, W. Müller, and W. Schmidl, Praxisnahe Unterstützung der Betreiber bei der Optimierung und nachhaltigen Nutzung der bayerischen MV-Anlagen. Bayerisches Landesamt für Umweltschutz, Report, 2002

  19. Y. Kawahara, High Temperature Corrosion Mechanisms and Effect of Alloying Elements for Materials Used in Waste Incineration Environment, Corros. Sci., 2002, 44, p 223-245

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Christian Galetz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Galetz, M.C., Bauer, J.T., Schütze, M. et al. Resistance of Coatings for Boiler Components of Waste-to-Energy Plants to Salt Melts Containing Copper Compounds. J Therm Spray Tech 22, 828–837 (2013). https://doi.org/10.1007/s11666-013-9908-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-013-9908-9

Keywords

  • boiler materials
  • corrosion resistance
  • corrosion testing
  • high temperature application
  • high temperature oxidation
  • protective coatings