Titanium Dioxide Coatings Sprayed by a Water-Stabilized Plasma Gun (WSP) with Argon and Nitrogen as the Powder Feeding Gas: Differences in Structural, Mechanical and Photocatalytic Behavior


Titanium dioxide coatings were sprayed by a water-stabilized plasma gun to form robust self-supporting bodies with a photocatalytically active surface. Agglomerated nanometric powder was used as a feedstock. In one case argon was used as a powder-feeding as well as coating-cooling gas whereas in the other case nitrogen was used. Stainless steel was used as a substrate and the coatings were released after the cooling. Over one millimeter thick self-supporting bodies were studied by XRD, HR-TEM, XPS, Raman spectroscopy, UV-VIS spectrophotometry and photocatalytic tests. Selected tests were done at the surface as well as at the bottom side representing the contact surface with the substrate during the spray process. Porosity was studied by image analysis on polished cross sections where also microhardness was measured. The dominant phase present in the sprayed samples was rutile, whereas anatase was only a minor component. The hydrogen content in the nitrogen-assisted coating was higher, but the character of the optical absorption edge remained the same for both samples. Photoelectron spectroscopy revealed differences in the character of the O1s peak between both samples. The photocatalytic activity was tested by decomposition of acetone at UV illumination, whereas also the end products—CO and CO2—were monitored. The nitrogen-assisted coating was revealed as a more efficient photocatalyst. Certain aspects of a thermal post-treatment on the coatings are discussed as well. Color and electrical conductivity are markedly changed at annealing at 760 °C, whereas only very small changes of the as-sprayed coating character correspond to annealing at 500 °C.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    N. Negishi, K. Takeuchi, and T. Ibusuki, The Surface Structure of Titanium Dioxide Thin Film Photocatalyst, Appl. Surf. Sci., 1997, 121, p 417-420

    Article  Google Scholar 

  2. 2.

    S. Matsuda, H. Hatano, and A. Tsutsumi, Ultrafine Particle Fluidization and Its Application to Photocatalytic NOx Treatment, Chem. Eng. J., 2001, 82, p 183-188

    Article  CAS  Google Scholar 

  3. 3.

    K. Brinkiene, R. Kezelis, A. Baltusnikas, V. Mecius, and V. Matulioniene, Investigation of the Properties of Plasma Sprayed Titania, Mater. Sci., 2004, 10, p 345-348

    Google Scholar 

  4. 4.

    F.-L. Toma, G. Bertrand, D. Klein, C. Meunier, and S. Begin, Development of Photocatalytic Active TiO2 surfaces by Thermal Spraying of Nanopowders, J. Nanomater., 2008, Article ID 384171, doi:10.1155/2008/384171

  5. 5.

    I. Tsuyumoto and H. Uchikawa, Nonstoichiometric Orthorhombic Titanium Oxide, TiO2−x and Its Thermochromic Properties, Mater. Res. Bull., 2004, 39, p 1737-1744

    Article  CAS  Google Scholar 

  6. 6.

    I. Burlacov, J. Jirkovsky, M. Müller, and R.B. Heimann, Induction Plasma-Sprayed Photocatalytically Active Titania Coatings and Their Characterisation by Micro-Raman Spectroscopy, Surf. Coat. Technol., 2006, 201, p 255-264

    Article  CAS  Google Scholar 

  7. 7.

    H. Chen, S.W. Lee, T.H. Kim, and B.Y. Hur, Photocatalytic Decomposition of Benzene with Plasma Sprayed TiO2-Based Coatings on Foamed Aluminum, J. Eur. Ceram. Soc., 2006, 26, p 2231-2239

    Article  CAS  Google Scholar 

  8. 8.

    T. Kanazawa and A. Ohmori, Behavior of TiO2 Coating Formation on PET Plate by Plasma Spraying and Evaluation of Coating’s Photocatalytic Activity, Surf. Coat. Technol., 2005, 197, p 45-50

    Article  CAS  Google Scholar 

  9. 9.

    Ch. Lee, H. Choi, C. Lee, and H. Kim, Photocatalytic Properties of Nano-Structured TiO2 Plasma Sprayed Coating, Surf. Coat. Technol., 2003, 173, p 192-200

    Article  CAS  Google Scholar 

  10. 10.

    J. Colmenares-Angulo, S. Zhao, C. Young, and A. Orlov, The Effects of Thermal Spray Technique and Post-Deposition Treatment on the Photocatalytic Activity of TiO2 Coatings, Surf. Coat. Technol., 2009, 204, p 423-427

    Article  CAS  Google Scholar 

  11. 11.

    M. Bozorgtabar, M. Rahimipour, and M. Salehi, Novel Photocatalytic TiO2 Coatings Produced by HVOF Thermal Spraying Process, Mater. Lett., 2010, 64, p 1173-1175

    Article  CAS  Google Scholar 

  12. 12.

    S. Kozerski, F.-L. Toma, L. Pawlowski, B. Leupolt, L. Latka, and L.-M. Berger, Suspension Plasma Sprayed TiO2 Coatings Using Different Injectors and Their Photocatalytic Properties, Surf. Coat. Technol., 2010, 205, p 980-986

    Article  CAS  Google Scholar 

  13. 13.

    P. Ctibor, K. Neufuss, and P. Chraska, Microstructure and Slurry Abrasion Resistance of Plasma Sprayed Titania Coatings, J. Therm. Spray Technol., 2006, 15(4), p 689-694

    Article  CAS  Google Scholar 

  14. 14.

    M.K. Reddy, S.V. Manorama, and A.R. Reddy, Bandgap Studies on Anatase Titanium Dioxide, Mater. Chem. Phys., 2002, 78, p 239-245

    Article  Google Scholar 

  15. 15.

    L.-M. Berger, C.C. Stahr, S. Saaro, S. Thiele, M. Woydt, and N. Kelling, Dry Sliding Up to 7.5 m/s and 800°C of Thermally Sprayed Coatings of the TiO2-Cr2O3 System and (Ti, Mo)(C, N)-Ni(Co), Wear, 2009, 267, p 954-964

    Article  CAS  Google Scholar 

  16. 16.

    I.N. Martyanov, T. Berger, O. Diwald, S. Rodrigues, and K.J. Klabunde, Enhancement of TiO2 Visible Light Photoactivity Through Accumulation of Defects During Reduction-Oxidation Treatment, J. Photochem. Photobiol. A, 2010, 212, p 135-141

    Article  CAS  Google Scholar 

  17. 17.

    T.D. Robert, L.D. Laude, V.M. Geskin, R. Lazzaroni, and R. Gouttebaron, Micro-Raman Spectroscopy Study of Surface Transformations Induced by Excimer Laser Irradiation of TiO2, Thin Solid Films, 2003, 440, p 268-277

    Article  CAS  Google Scholar 

  18. 18.

    C. Giolli, F. Borgioli, A. Credi, A. Di Fabio, A. Fossati, M. Muniz Miranda, S. Parmeggiani, G. Rizzi, A. Scrivani, S. Troglio, A. Tolstoguzov, A. Zoppi, and U. Bardi, Characterization of TiO2 Coatings Prepared by a Modified Electric Arc-Physical Vapour Deposition System, Surf. Coat. Technol., 2007, 202, p 13-22

    Article  CAS  Google Scholar 

  19. 19.

    V. Krishnan, S. Heislbetz, M.M. Natile, A. Glisenti, and H. Bertagnolli, Influence of Preparation Technique and Iron Doping on the Structure and Reactivity of Mixed Fe-Ti-O Nanocomposites, Mater. Chem. Phys., 2005, 92, p 394-402

    Article  CAS  Google Scholar 

  20. 20.

    M. Vilay, P.V. Ananthapadmanabhan, and K.P. Sreekumar, Evolution of Photo-Catalytic Properties of Reactive Plasma Processed Nano-Crystalline Titanium Dioxide Powder, Appl. Surf. Sci., 2009, 255, p 9316-9322

    Article  Google Scholar 

  21. 21.

    T.K. Sham and M.S. Lazarus, X-Ray Photoelectron Spectroscopy (XPS) Studies of Clean and Hydrated TiO2 (Rutile) Surfaces, Chem. Phys. Lett., 1979, 68(2-3), p 426-432

    Article  CAS  Google Scholar 

  22. 22.

    V.V. Atuchin, V.G. Kesler, N.V. Pervukhina, and Z. Zhang, Ti 2p and O1s Core Levels and Chemical Bonding in Titanium-Bearing Oxides, J. Electron Spectrosc. Relat. Phenom., 2006, 152, p 18-24

    Article  CAS  Google Scholar 

  23. 23.

    F.-L. Toma, G. Bertrand, S. Begin, C. Meunier, O. Barres, D. Klein, and C. Coddet, Microstructure and Environmental Functionalities of TiO2-Supported Photocatalysts Obtained by Suspension Plasma Spraying, Appl. Catal. B, 2006, 68, p 74-84

    Article  CAS  Google Scholar 

  24. 24.

    H. Shen, L. Mi, P. Xu, W. Shen, and P.-N. Wang, Visible-Light Photocatalysis of Nitrogen-Doped TiO2 Nanoparticulate Films Prepared by Low-Energy Ion Implantation, Appl. Surf. Sci., 2007, 253, p 7024-7028

    Article  CAS  Google Scholar 

  25. 25.

    F. Napoli, M. Chiesa, S. Livraghi, E. Giamello, S. Agnoli, G. Granozzi, G. Pacchioni, and C. Di Valentin, The Nitrogen Photoactive Centre in N-Doped Titanium Dioxide Formed Via Interaction of N Atoms with the Solid. Nature and Energy Level of the Species, Chem. Phys. Lett., 2009, 477, p 135-138

    Article  CAS  Google Scholar 

  26. 26.

    T. Chiaramonte, L.P. Cardoso, R.V. Gelamo, F. Fabreguette, M. Sacilotti, M.C. Marco de Lucas, L. Imhoff, S. Bourgeois, Y. Kihn, and M.-J. Casanove, Structural Characterization of TiO2/TiNxOy (d-Doping) Heterostructures on (110) TiO2 Substrates, Appl. Surf. Sci., 2003, 212-213, p 661-666

    Article  CAS  Google Scholar 

  27. 27.

    F. Dong, W. Zhao, Z. Wu, and S. Guo, Band Structure and Visible Light Photocatalytic Activity of Multi-Type Nitrogen Doped TiO2 Nanoparticles Prepared by Thermal Decomposition, J. Hazard. Mater., 2009, 162, p 763-770

    Article  CAS  Google Scholar 

  28. 28.

    N. Hosaka, T. Sekiya, M. Fujisawa, Ch. Satoko, and S. Kurita, UV Reflection Spectra of Anatase TiO2, J. Electron Spectrosc. Relat. Phenom., 1996, 78, p 75-78

    Article  CAS  Google Scholar 

  29. 29.

    J. Ryu, D.-S. Park, B.-D. Hahn, J.-J. Choi, W.-Ha. Yoon, K.-Y. Kim, and H.-S. Yun, Photocatalytic TiO2 Thin Films by Aerosol-Deposition: From Micron-Sized Particles to Nano-Grained Thin Film at Room Temperature, Appl. Catal. B, 2008, 83, p 1-7

    Article  CAS  Google Scholar 

  30. 30.

    L. Wan, J.F. Li, J.Y. Feng, W. Sun, and Z.Q. Mao, Anatase TiO2 Films with 2.2 eV Band Gap Prepared by Micro-Arc Oxidation, Mater. Sci. Eng. B, 2007, 139, p 216-220

    Article  CAS  Google Scholar 

  31. 31.

    D.C. Hurum, A.G. Agrios, S.E. Crist, K.A. Gray, T. Rajh, and M.C. Thurnauer, Probing Reaction Mechanisms in Mixed Phase TiO2 by EPR, J. Electron Spectrosc. Relat. Phenom., 2006, 150, p 155-163

    Article  CAS  Google Scholar 

  32. 32.

    E. Barajas-Ledesma, M.L. García-Benjume, I. Espitia-Cabrera, M. Ortiz-Gutierez, F.J. Espinoza-Beltran, J. Mostaghimi, and M.E. Contreras-Garcia, Determination of the Band Gap of TiO2-Al2O3 Films as a Function of Processing Parameters, Mater. Sci. Eng. B, 2010, 174, p 71-73

    Article  CAS  Google Scholar 

  33. 33.

    V. Nadtochenko, N. Denisov, A. Gorenberg, Y. Kozlov, P. Chubukov, J.A. Rengifo, C. Pulgarin, and J. Kiwi, Correlations for Photocatalytic Activity and Spectral Features of the Absorption Band Edge of TiO2 Modified by Thiourea, Appl. Catal. B, 2009, 91, p 460-469

    Article  CAS  Google Scholar 

  34. 34.

    Gmelins Handbook of Inorganic Chemistry, vol. 41—Titan, Springer, Berlin, 1976, p 426, in German

  35. 35.

    C.T. Dervos, E. Thirios, J. Novacovich, P. Vassiliou, and P. Skafidas, Permittivity Properties of Thermally Reated TiO2, Mater. Lett., 2004, 58, p 1502-1507

    Article  CAS  Google Scholar 

  36. 36.

    P. Ctibor, P. Boháč, M. Stranyánek, and R. Čtvrtlík, Structure and Mechanical Properties of Plasma Sprayed Coatings of Titania and Alumina, J. Eur. Ceram. Soc., 2006, 26(16), p 3509-3514

    Article  CAS  Google Scholar 

Download references


The work done at IPP ASCR was supported by the Academy of Science of the Czech Republic under project AV0 Z20430508 and the work done at FMP by the research program MSM 0021620834 financed by the Ministry of Education of the Czech Republic. I. Píš thanks also the Grant Agency of the Czech Republic (Grant No. 202/09/H041) for the research support. The authors thank N. Murafa, IIC ASCR, for the HR-TEM micrographs.

Author information



Corresponding author

Correspondence to P. Ctibor.

Additional information

This article is an invited paper selected from presentations at the 2011 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Thermal Spray 2011: Proceedings of the International Thermal Spray Conference, Hamburg, Germany, September 27-29, 2011, Basil R. Marple, Arvind Agarwal, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and André McDonald, Ed., ASM International, Materials Park, OH, 2011.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ctibor, P., Pala, Z., Sedláček, J. et al. Titanium Dioxide Coatings Sprayed by a Water-Stabilized Plasma Gun (WSP) with Argon and Nitrogen as the Powder Feeding Gas: Differences in Structural, Mechanical and Photocatalytic Behavior. J Therm Spray Tech 21, 425–434 (2012). https://doi.org/10.1007/s11666-012-9747-0

Download citation


  • bandgap
  • photocatalysis
  • resistivity
  • spectroscopy
  • TiO2