Journal of Thermal Spray Technology

, Volume 21, Issue 3–4, pp 425–434 | Cite as

Titanium Dioxide Coatings Sprayed by a Water-Stabilized Plasma Gun (WSP) with Argon and Nitrogen as the Powder Feeding Gas: Differences in Structural, Mechanical and Photocatalytic Behavior

  • P. CtiborEmail author
  • Z. Pala
  • J. Sedláček
  • V. Štengl
  • I. Píš
  • T. Zahoranová
  • V. Nehasil


Titanium dioxide coatings were sprayed by a water-stabilized plasma gun to form robust self-supporting bodies with a photocatalytically active surface. Agglomerated nanometric powder was used as a feedstock. In one case argon was used as a powder-feeding as well as coating-cooling gas whereas in the other case nitrogen was used. Stainless steel was used as a substrate and the coatings were released after the cooling. Over one millimeter thick self-supporting bodies were studied by XRD, HR-TEM, XPS, Raman spectroscopy, UV-VIS spectrophotometry and photocatalytic tests. Selected tests were done at the surface as well as at the bottom side representing the contact surface with the substrate during the spray process. Porosity was studied by image analysis on polished cross sections where also microhardness was measured. The dominant phase present in the sprayed samples was rutile, whereas anatase was only a minor component. The hydrogen content in the nitrogen-assisted coating was higher, but the character of the optical absorption edge remained the same for both samples. Photoelectron spectroscopy revealed differences in the character of the O1s peak between both samples. The photocatalytic activity was tested by decomposition of acetone at UV illumination, whereas also the end products—CO and CO2—were monitored. The nitrogen-assisted coating was revealed as a more efficient photocatalyst. Certain aspects of a thermal post-treatment on the coatings are discussed as well. Color and electrical conductivity are markedly changed at annealing at 760 °C, whereas only very small changes of the as-sprayed coating character correspond to annealing at 500 °C.


bandgap photocatalysis resistivity spectroscopy TiO2 



The work done at IPP ASCR was supported by the Academy of Science of the Czech Republic under project AV0 Z20430508 and the work done at FMP by the research program MSM 0021620834 financed by the Ministry of Education of the Czech Republic. I. Píš thanks also the Grant Agency of the Czech Republic (Grant No. 202/09/H041) for the research support. The authors thank N. Murafa, IIC ASCR, for the HR-TEM micrographs.


  1. 1.
    N. Negishi, K. Takeuchi, and T. Ibusuki, The Surface Structure of Titanium Dioxide Thin Film Photocatalyst, Appl. Surf. Sci., 1997, 121, p 417-420CrossRefGoogle Scholar
  2. 2.
    S. Matsuda, H. Hatano, and A. Tsutsumi, Ultrafine Particle Fluidization and Its Application to Photocatalytic NOx Treatment, Chem. Eng. J., 2001, 82, p 183-188CrossRefGoogle Scholar
  3. 3.
    K. Brinkiene, R. Kezelis, A. Baltusnikas, V. Mecius, and V. Matulioniene, Investigation of the Properties of Plasma Sprayed Titania, Mater. Sci., 2004, 10, p 345-348Google Scholar
  4. 4.
    F.-L. Toma, G. Bertrand, D. Klein, C. Meunier, and S. Begin, Development of Photocatalytic Active TiO2 surfaces by Thermal Spraying of Nanopowders, J. Nanomater., 2008, Article ID 384171, doi: 10.1155/2008/384171
  5. 5.
    I. Tsuyumoto and H. Uchikawa, Nonstoichiometric Orthorhombic Titanium Oxide, TiO2−x and Its Thermochromic Properties, Mater. Res. Bull., 2004, 39, p 1737-1744CrossRefGoogle Scholar
  6. 6.
    I. Burlacov, J. Jirkovsky, M. Müller, and R.B. Heimann, Induction Plasma-Sprayed Photocatalytically Active Titania Coatings and Their Characterisation by Micro-Raman Spectroscopy, Surf. Coat. Technol., 2006, 201, p 255-264CrossRefGoogle Scholar
  7. 7.
    H. Chen, S.W. Lee, T.H. Kim, and B.Y. Hur, Photocatalytic Decomposition of Benzene with Plasma Sprayed TiO2-Based Coatings on Foamed Aluminum, J. Eur. Ceram. Soc., 2006, 26, p 2231-2239CrossRefGoogle Scholar
  8. 8.
    T. Kanazawa and A. Ohmori, Behavior of TiO2 Coating Formation on PET Plate by Plasma Spraying and Evaluation of Coating’s Photocatalytic Activity, Surf. Coat. Technol., 2005, 197, p 45-50CrossRefGoogle Scholar
  9. 9.
    Ch. Lee, H. Choi, C. Lee, and H. Kim, Photocatalytic Properties of Nano-Structured TiO2 Plasma Sprayed Coating, Surf. Coat. Technol., 2003, 173, p 192-200CrossRefGoogle Scholar
  10. 10.
    J. Colmenares-Angulo, S. Zhao, C. Young, and A. Orlov, The Effects of Thermal Spray Technique and Post-Deposition Treatment on the Photocatalytic Activity of TiO2 Coatings, Surf. Coat. Technol., 2009, 204, p 423-427CrossRefGoogle Scholar
  11. 11.
    M. Bozorgtabar, M. Rahimipour, and M. Salehi, Novel Photocatalytic TiO2 Coatings Produced by HVOF Thermal Spraying Process, Mater. Lett., 2010, 64, p 1173-1175CrossRefGoogle Scholar
  12. 12.
    S. Kozerski, F.-L. Toma, L. Pawlowski, B. Leupolt, L. Latka, and L.-M. Berger, Suspension Plasma Sprayed TiO2 Coatings Using Different Injectors and Their Photocatalytic Properties, Surf. Coat. Technol., 2010, 205, p 980-986CrossRefGoogle Scholar
  13. 13.
    P. Ctibor, K. Neufuss, and P. Chraska, Microstructure and Slurry Abrasion Resistance of Plasma Sprayed Titania Coatings, J. Therm. Spray Technol., 2006, 15(4), p 689-694CrossRefGoogle Scholar
  14. 14.
    M.K. Reddy, S.V. Manorama, and A.R. Reddy, Bandgap Studies on Anatase Titanium Dioxide, Mater. Chem. Phys., 2002, 78, p 239-245CrossRefGoogle Scholar
  15. 15.
    L.-M. Berger, C.C. Stahr, S. Saaro, S. Thiele, M. Woydt, and N. Kelling, Dry Sliding Up to 7.5 m/s and 800°C of Thermally Sprayed Coatings of the TiO2-Cr2O3 System and (Ti, Mo)(C, N)-Ni(Co), Wear, 2009, 267, p 954-964CrossRefGoogle Scholar
  16. 16.
    I.N. Martyanov, T. Berger, O. Diwald, S. Rodrigues, and K.J. Klabunde, Enhancement of TiO2 Visible Light Photoactivity Through Accumulation of Defects During Reduction-Oxidation Treatment, J. Photochem. Photobiol. A, 2010, 212, p 135-141CrossRefGoogle Scholar
  17. 17.
    T.D. Robert, L.D. Laude, V.M. Geskin, R. Lazzaroni, and R. Gouttebaron, Micro-Raman Spectroscopy Study of Surface Transformations Induced by Excimer Laser Irradiation of TiO2, Thin Solid Films, 2003, 440, p 268-277CrossRefGoogle Scholar
  18. 18.
    C. Giolli, F. Borgioli, A. Credi, A. Di Fabio, A. Fossati, M. Muniz Miranda, S. Parmeggiani, G. Rizzi, A. Scrivani, S. Troglio, A. Tolstoguzov, A. Zoppi, and U. Bardi, Characterization of TiO2 Coatings Prepared by a Modified Electric Arc-Physical Vapour Deposition System, Surf. Coat. Technol., 2007, 202, p 13-22CrossRefGoogle Scholar
  19. 19.
    V. Krishnan, S. Heislbetz, M.M. Natile, A. Glisenti, and H. Bertagnolli, Influence of Preparation Technique and Iron Doping on the Structure and Reactivity of Mixed Fe-Ti-O Nanocomposites, Mater. Chem. Phys., 2005, 92, p 394-402CrossRefGoogle Scholar
  20. 20.
    M. Vilay, P.V. Ananthapadmanabhan, and K.P. Sreekumar, Evolution of Photo-Catalytic Properties of Reactive Plasma Processed Nano-Crystalline Titanium Dioxide Powder, Appl. Surf. Sci., 2009, 255, p 9316-9322CrossRefGoogle Scholar
  21. 21.
    T.K. Sham and M.S. Lazarus, X-Ray Photoelectron Spectroscopy (XPS) Studies of Clean and Hydrated TiO2 (Rutile) Surfaces, Chem. Phys. Lett., 1979, 68(2-3), p 426-432CrossRefGoogle Scholar
  22. 22.
    V.V. Atuchin, V.G. Kesler, N.V. Pervukhina, and Z. Zhang, Ti 2p and O1s Core Levels and Chemical Bonding in Titanium-Bearing Oxides, J. Electron Spectrosc. Relat. Phenom., 2006, 152, p 18-24CrossRefGoogle Scholar
  23. 23.
    F.-L. Toma, G. Bertrand, S. Begin, C. Meunier, O. Barres, D. Klein, and C. Coddet, Microstructure and Environmental Functionalities of TiO2-Supported Photocatalysts Obtained by Suspension Plasma Spraying, Appl. Catal. B, 2006, 68, p 74-84CrossRefGoogle Scholar
  24. 24.
    H. Shen, L. Mi, P. Xu, W. Shen, and P.-N. Wang, Visible-Light Photocatalysis of Nitrogen-Doped TiO2 Nanoparticulate Films Prepared by Low-Energy Ion Implantation, Appl. Surf. Sci., 2007, 253, p 7024-7028CrossRefGoogle Scholar
  25. 25.
    F. Napoli, M. Chiesa, S. Livraghi, E. Giamello, S. Agnoli, G. Granozzi, G. Pacchioni, and C. Di Valentin, The Nitrogen Photoactive Centre in N-Doped Titanium Dioxide Formed Via Interaction of N Atoms with the Solid. Nature and Energy Level of the Species, Chem. Phys. Lett., 2009, 477, p 135-138CrossRefGoogle Scholar
  26. 26.
    T. Chiaramonte, L.P. Cardoso, R.V. Gelamo, F. Fabreguette, M. Sacilotti, M.C. Marco de Lucas, L. Imhoff, S. Bourgeois, Y. Kihn, and M.-J. Casanove, Structural Characterization of TiO2/TiNxOy (d-Doping) Heterostructures on (110) TiO2 Substrates, Appl. Surf. Sci., 2003, 212-213, p 661-666CrossRefGoogle Scholar
  27. 27.
    F. Dong, W. Zhao, Z. Wu, and S. Guo, Band Structure and Visible Light Photocatalytic Activity of Multi-Type Nitrogen Doped TiO2 Nanoparticles Prepared by Thermal Decomposition, J. Hazard. Mater., 2009, 162, p 763-770CrossRefGoogle Scholar
  28. 28.
    N. Hosaka, T. Sekiya, M. Fujisawa, Ch. Satoko, and S. Kurita, UV Reflection Spectra of Anatase TiO2, J. Electron Spectrosc. Relat. Phenom., 1996, 78, p 75-78CrossRefGoogle Scholar
  29. 29.
    J. Ryu, D.-S. Park, B.-D. Hahn, J.-J. Choi, W.-Ha. Yoon, K.-Y. Kim, and H.-S. Yun, Photocatalytic TiO2 Thin Films by Aerosol-Deposition: From Micron-Sized Particles to Nano-Grained Thin Film at Room Temperature, Appl. Catal. B, 2008, 83, p 1-7CrossRefGoogle Scholar
  30. 30.
    L. Wan, J.F. Li, J.Y. Feng, W. Sun, and Z.Q. Mao, Anatase TiO2 Films with 2.2 eV Band Gap Prepared by Micro-Arc Oxidation, Mater. Sci. Eng. B, 2007, 139, p 216-220CrossRefGoogle Scholar
  31. 31.
    D.C. Hurum, A.G. Agrios, S.E. Crist, K.A. Gray, T. Rajh, and M.C. Thurnauer, Probing Reaction Mechanisms in Mixed Phase TiO2 by EPR, J. Electron Spectrosc. Relat. Phenom., 2006, 150, p 155-163CrossRefGoogle Scholar
  32. 32.
    E. Barajas-Ledesma, M.L. García-Benjume, I. Espitia-Cabrera, M. Ortiz-Gutierez, F.J. Espinoza-Beltran, J. Mostaghimi, and M.E. Contreras-Garcia, Determination of the Band Gap of TiO2-Al2O3 Films as a Function of Processing Parameters, Mater. Sci. Eng. B, 2010, 174, p 71-73CrossRefGoogle Scholar
  33. 33.
    V. Nadtochenko, N. Denisov, A. Gorenberg, Y. Kozlov, P. Chubukov, J.A. Rengifo, C. Pulgarin, and J. Kiwi, Correlations for Photocatalytic Activity and Spectral Features of the Absorption Band Edge of TiO2 Modified by Thiourea, Appl. Catal. B, 2009, 91, p 460-469CrossRefGoogle Scholar
  34. 34.
    Gmelins Handbook of Inorganic Chemistry, vol. 41—Titan, Springer, Berlin, 1976, p 426, in GermanGoogle Scholar
  35. 35.
    C.T. Dervos, E. Thirios, J. Novacovich, P. Vassiliou, and P. Skafidas, Permittivity Properties of Thermally Reated TiO2, Mater. Lett., 2004, 58, p 1502-1507CrossRefGoogle Scholar
  36. 36.
    P. Ctibor, P. Boháč, M. Stranyánek, and R. Čtvrtlík, Structure and Mechanical Properties of Plasma Sprayed Coatings of Titania and Alumina, J. Eur. Ceram. Soc., 2006, 26(16), p 3509-3514CrossRefGoogle Scholar

Copyright information

© ASM International 2012

Authors and Affiliations

  • P. Ctibor
    • 1
    Email author
  • Z. Pala
    • 1
  • J. Sedláček
    • 2
  • V. Štengl
    • 3
  • I. Píš
    • 4
  • T. Zahoranová
    • 4
  • V. Nehasil
    • 4
  1. 1.Institute of Plasma PhysicsASCRPraha 8Czech Republic
  2. 2.Department of Electrotechnology, Faculty of Electrical EngineeringCzech Technical UniversityPraha 6Czech Republic
  3. 3.Institute of Inorganic ChemistryASCRHusinec-RezCzech Republic
  4. 4.Department of Surface and Plasma Science, Faculty of Mathematics and PhysicsCharles UniversityPraha 8Czech Republic

Personalised recommendations