Skip to main content

Wear Behavior of Plasma-Sprayed Carbon Nanotube-Reinforced Aluminum Oxide Coating in Marine and High-Temperature Environments


Wear behavior of plasma-sprayed carbon nanotube (CNT)-reinforced aluminum oxide (Al2O3) composite coatings are investigated at room temperature (298 K), elevated temperature (873 K), and in sea water. Lowest wear volume loss was observed in the sea water as compared to dry sliding at 298 and 873 K. Relative improvement in the wear resistance of Al2O3-8 wt.% CNT coating compared to Al2O3 was 72% at 298 K, 76% at 873 K, and 66% in sea water. The improvement in the wear resistance of Al2O3-CNT coatings is attributed to (i) larger area coverage by protective film on the wear surface at room temperature and in sea water, (ii) higher fracture toughness of Al2O3-CNT coatings due to CNT bridging between splats, and (iii) anti-friction effect of sea water. The average coefficient of friction (COF) was the lowest (0.55) in sea water and the highest (0.83) at 873 K for Al2O3-8 wt.% CNT coating.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    K. Balani and A. Agarwal, Process Map for Plasma Sprayed Aluminum Oxide-Carbon Nanotube Nanocomposite Coatings, Surf. Coat. Technol., 2008, 202, p 4270-4277

    Article  CAS  Google Scholar 

  2. 2.

    E.H. Jordan and M. Gell, Nano Crystalline Ceramic and Ceramic Coatings Made by Conventional and Solution Plasma Spray, Nanomaterials Technology for Military Vehicle Structural Applications, RTO-MP-AVT-122, 3-4 October, 2005

  3. 3.

    G.R. Karagedov and N.Z. Lyakhov, Preparation and Sintering of Nanosized Alpha-Al2O3 Powder, Nanostruct. Mater., 1999, 11, p 559-572

    Article  CAS  Google Scholar 

  4. 4.

    H. Luo, D. Goberman, L. Shaw, and M. Gell, Indentation Fracture Behavior of Plasma-Sprayed Nanostructured Al2O3-13 wt.% TiO2 Coatings, Mater. Sci. Eng. A, 2003, 346, p 237-245

    Article  Google Scholar 

  5. 5.

    L.L. Shaw, D. Goberman, R. Ren, M. Gell, S. Jiang, Y. Wang, D.T. Xiao, and P.R. Strutt, The Dependency of Microstructure and Properties of Nanostructured Coatings on Plasma Spray Conditions, Surf. Coat. Technol., 2000, 180, p 1-8

    Article  Google Scholar 

  6. 6.

    Y. Wang, S. Jiang, M. Wang, S. Wang, T.D. Xiao, and P.R. Strutt, Abrasive Wear Characteristics of Plasma Sprayed Nanostructured Alumina/Titania Coatings, Wear, 2000, 237, p 176-185

    Article  CAS  Google Scholar 

  7. 7.

    H.Y. Ding, Z.D. Dai, S.C. Skuiry, and D. Hui, Corrosion Wear Behaviors of Micro-Arc Oxidation Coating of Al2O3 on 2024Al in Different Aqueous Environments at Fretting Contact, Tribol. Int., 2010, 43, p 868-875

    Article  CAS  Google Scholar 

  8. 8.

    A.K. Keshri, J. Huang, W. Choi, and A. Agarwal, Intermediate Temperature Tribological Behavior of Carbon Nanotube Reinforced Plasma Sprayed Aluminum Oxide Coating, Surf. Coat. Technol., 2010, 204, p 1847-1855

    Article  CAS  Google Scholar 

  9. 9.

    X. Lin, Y. Zenga, C. Ding, and P. Zhang, Effects of Temperature on Tribological Properties of Nanostructured and Conventional Al2O3-3 wt.% TiO2 Coatings, Wear, 2004, 256, p 1018-1025

    Article  CAS  Google Scholar 

  10. 10.

    D. Yan, J. He, X. Li, Y. Liu, J. Zhang, and H. Ding, An Investigation of the Corrosion Behavior of Al2O3-Based Ceramic Composite Coatings in Dilute HCl Solution, Surf. Coat. Technol., 2001, 141, p 1-6

    Article  CAS  Google Scholar 

  11. 11.

    I. Ahmad, A. Kennedy, and Y.Q. Zhu, Wear Resistant Properties of Multi Walled Carbon Nanotubes Reinforced Al2O3 Nanocomposites, Wear, 2010, 269, p 71-78

    Article  CAS  Google Scholar 

  12. 12.

    J.W. An, D.H. You, and D.S. Lim, Tribological Properties of Hot-Pressed Alumina-CNT Composites, Wear, 2003, 255, p 677-681

    Article  CAS  Google Scholar 

  13. 13.

    K. Balani, S.P. Harimkar, A.K. Keshri, Y. Chen, N.B. Dahotre, and A. Agarwal, Multiscale Wear of Plasma-Sprayed Carbon-Nanotube-Reinforced Aluminum Oxide Nanocomposite Coating, Acta Mater., 2008, 56, p 5984-5994

    Article  CAS  Google Scholar 

  14. 14.

    D.S. Lim, J.W. An, and H.J. Lee, Effect of Carbon Nanotube Addition on the Tribological Behavior of Carbon/Carbon Composites, Wear, 2002, 252, p 512-517

    Article  CAS  Google Scholar 

  15. 15.

    D.S. Lim, D.H. You, H.J. Choi, S.H. Lim, and H. Jang, Effect of CNT Distribution on Tribological Behavior of Alumina-CNT Composites, Wear, 2005, 259, p 539-544

    Article  CAS  Google Scholar 

  16. 16.

    A.K. Keshri, R. Patel, and A. Agarwal, Comprehensive Process Maps to Synthesize High Density Plasma Sprayed Aluminum Oxide Composite Coatings with Varying Carbon Nanotube Content, Surf. Coat. Technol., 2010, 205, p 690-702

    Article  CAS  Google Scholar 

  17. 17.

    G.R. Anstis, P. Chantikul, B.R. Lawn, and D.B. Marshall, A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: Direct Crack Measurements, J. Am. Ceram. Soc., 1981, 64, p 533-538

    Article  CAS  Google Scholar 

  18. 18.

    J. Wang, F. Yana, and Q. Xue, Tribological Behavior of PTFE Sliding Against Steel in Sea Water, Wear, 2009, 267, p 1634-1641

    Article  CAS  Google Scholar 

  19. 19.

    X. Wang, N.P. Padture, and H. Tanaka, Contact-Damage-Resistant Ceramic/Single-Wall Carbon Nanotubes and Ceramic/Graphite Composites, Nat. Mater., 2004, 3, p 539-544

    Article  CAS  Google Scholar 

  20. 20.

    G.D. Zhan, J.D. Kuntz, J. Wan, and A.K. Mukherjee, Single Walled Carbon Nanotube as Attractive Toughening Agents in Alumina Based Nanocomposites, Nat. Mater., 2003, 2, p 38-42

    Article  CAS  Google Scholar 

  21. 21.

    G.D. Quinn and R.C. Bradt, On the Vickers Indentation Fracture Toughness Test, J. Am. Ceram. Soc., 2007, 90, p 673-680

    Article  CAS  Google Scholar 

  22. 22.

    S.S. Kim, Y.H. Chae, and D.J. Kim, Tribological Characteristics of Silicon Nitride at Elevated Temperatures, Tribol. Lett., 2000, 9, p 227-232

    Article  CAS  Google Scholar 

  23. 23.

    J. Li and D. Xiong, Tribological Behavior of Graphite-Containing Nickel-Based Composite as Function of Temperature, Load and Counterface, Wear, 2009, 266, p 360-367

    Article  CAS  Google Scholar 

  24. 24.

    S. Wilson and A.T. Alpas, Dry Sliding Wear of a PVD TiN Coating Against Si3N4 at Elevated Temperatures, Surf. Coat. Technol., 1996, 86-87, p 75-81

    Article  CAS  Google Scholar 

  25. 25.

    FACTSAGE, Thermodynamic Equilibrium Software, Version 5.0, Center for Research in Computational Thermochemistry of the Ecole Polythechnique at the Université de Montréal and GTT-Technologies, GmbH, Aachen, Germany, 2001

  26. 26.

    Y.S. Feng, S.M. Zhou, Y. Li, and L.D. Zhang, Preparation of the SnO2/SiO2 Xerogel with a Large Specific Surface Area, Mater. Lett., 2003, 57, p 2409-2412

    Article  CAS  Google Scholar 

  27. 27.

    N. Koshizaki, H. Umehara, and T. Oyama, XPS Characterization and Optical Properties of Si/SiO2, Si/Al2O3 and Si/MgO Co-Sputtered Films, Thin Solid Films, 1998, 325, p 130-136

    Article  CAS  Google Scholar 

  28. 28.

    S. Osswald, M. Havel, and Y. Gogotsi, Monitoring Oxidation of Multiwalled Carbon Nanotubes by Raman Spectroscopy, J. Raman Spectrosc., 2007, 38, p 728-736

    Article  CAS  Google Scholar 

  29. 29.

    C. Li, D. Wang, T. Liang, X. Wang, J. Wu, X. Hu, and J. Liang, Oxidation of Multiwalled Carbon Nanotubes by Air: Benefits for Electric Double Layer Capacitors, Powder Technol., 2004, 142, p 175-179

    Article  CAS  Google Scholar 

  30. 30.

    A.G. Evans and B. Marshall, Wear Mechanism in Ceramics, Fundamentals of Friction and Wear of Materials, D.A. Rigney, Ed., ASM International, Metals Park, OH, 1981, p 439-452

Download references


The authors acknowledge the financial support received from the Office of Naval Research (N00014-08-1-0494). AKK acknowledges support from the Dissertation Year Fellowship by the University Graduate School of Florida International University (FIU). The authors are also grateful to the Center for the Study of Matter at Extreme Conditions (CeSMEC), FIU for allowing them to carry out Raman spectroscopy, and the Advanced Materials Engineering Research Institute (AMERI), FIU to avail the scanning electron microscopy facility.

Author information



Corresponding author

Correspondence to Arvind Agarwal.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Keshri, A.K., Agarwal, A. Wear Behavior of Plasma-Sprayed Carbon Nanotube-Reinforced Aluminum Oxide Coating in Marine and High-Temperature Environments. J Therm Spray Tech 20, 1217–1230 (2011).

Download citation


  • carbon nanotube
  • friction and wear
  • nanocrystalline composites
  • nanopowders
  • nanostructured coatings
  • plasma spraying
  • wear mechanisms