Journal of Thermal Spray Technology

, Volume 20, Issue 6, pp 1201–1208 | Cite as

Preparation and Thermophysical Properties of La2Zr2O7 Coatings by Thermal Spraying of an Amorphous Precursor

Peer Reviewed


Free-standing La2Zr2O7 coatings were obtained by plasma spraying, using an amorphous La-O-Zr precursor as the feedstock. The La-O-Zr precursor powder was prepared by coprecipitation. During thermal spraying, the formation of coatings can be regarded as a joint process of melting-solidification, thermal decomposition, and crystallization. The time required for crystal growth was significantly shortened during spraying. Consequently, the average grain size of coatings was approximately 200 nm, with a narrow distribution (100-500 nm). Coatings prepared by this method show better thermophysical properties than those prepared with crystalline La2Zr2O7 powder as the feedstock. The thermal conductivity of the as-sprayed coating was approximately 0.36-0.47 W/m K and the average coefficient of thermal expansion (CTE) is 11.1 × 10−6/K.


amorphous powder feedstock lanthanum zirconate plasma spraying thermal barrier coating thermophysical property 


  1. 1.
    N.P. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science, 2002, 296, p 280-284CrossRefGoogle Scholar
  2. 2.
    A.G. Evans, D.R. Clarke, and C.G. Levi, The Influence of Oxides on the Performance of Advanced Gas Turbines, J. Eur. Ceram. Soc., 2008, 28, p 1405-1419CrossRefGoogle Scholar
  3. 3.
    H.B. Guo, Y. Wang, L. Wang, and S.K. Gong, Thermo-Physical Properties and Thermal Shock Resistance of Segmented La2Ce2O7/YSZ Thermal Barrier Coatings, J. Therm. Spray Technol., 2009, 18(4), p 665-671CrossRefGoogle Scholar
  4. 4.
    C. Friedrich, R. Gadow, and T. Schirmer, Lanthanum Hexaaluminate—A New Material for Atmospheric Plasma Spraying of Advanced Thermal Barrier Coatings, J. Therm. Spray Technol., 2002, 37, p 2359-2365Google Scholar
  5. 5.
    R.A. Miller, J.L. Smialek, and R.G. Garlick, Phase Stability in Plasma Sprayed, Partially Stabilized Zirconia-Yttria, Science and Technology of Zirconia. Advances in Ceramics, Vol 3, A.H. Heuer and L.W. Hobbs, Ed., The American Ceramic Society, 1981, p 241-253Google Scholar
  6. 6.
    R.L. Jones and D. Mess, Improved Tetragonal Phase Stability at 1400 °C with Scandia, Yttria-Stabilized Zirconia, Surf. Coat. Technol., 1996, 86-87, p 94-101CrossRefGoogle Scholar
  7. 7.
    W. Pan, Q. Xu, L.H. Qi, J.D. Wang, H.Z. Miao, K. Mori, and T. Torigoe, Novel Low Thermal Conductivity Ceramic Materials for Thermal Barrier Coatings, Key Eng. Mater., 2005, 280-283, p 1497-1500CrossRefGoogle Scholar
  8. 8.
    Z.H. Xu, L.M. He, X.H. Zhong, R.D. Mu, S.M. He, and X.Q. Cao, Thermal Barrier Coating of Lanthanum-Zirconium-Cerium Composite Oxide Made by Electron Beam-Physical Vapor Deposition, J. Alloys Compd., 2009, 478, p 168-172CrossRefGoogle Scholar
  9. 9.
    J.R. Nicholls, K.J. Lawson, A. Johnstone, and D.S. Rickerby, Methods to Reduce the Thermal Conductivity of EB-PVD TBCs, Surf. Coat. Technol., 2002, 151-152, p 383-391CrossRefGoogle Scholar
  10. 10.
    D.R. Clarke and C.G. Levi, Materials Design for the Next Generation Thermal Barrier Coatings, Annu. Rev. Mater. Res., 2003, 33, p 383-417CrossRefGoogle Scholar
  11. 11.
    M.O. Jarligo, D.E. Mack, G. Mauer, R. Vaßen, and D. Stöver, Atmospheric Plasma Spraying of High Melting Temperature Complex Perovskites for TBC Application, J. Therm. Spray Technol., 2009, 19(1-2), p 303-310CrossRefGoogle Scholar
  12. 12.
    G. Bertrand, P. Bertrand, P. Roy, C. Rio, and R. Mevrel, Low Conductivity Plasma Sprayed Thermal Barrier Coating Using Hollow PSZ Spheres: Correlation Between Thermophysical Properties and Microstructure, Surf. Coat. Technol., 2008, 202(10), p 1994-2001CrossRefGoogle Scholar
  13. 13.
    L. Pawlowski, Finely Grained Nanometric and Submicrometric Coatings by Thermal Spraying: A Review, Surf. Coat. Technol., 2008, 202, p 4318-4328CrossRefGoogle Scholar
  14. 14.
    B.H. Kear and G. Skandan, Thermal Spray Processing of Nanoscale Materials, NanoStruct. Mater., 1997, 8(6), p 765-769CrossRefGoogle Scholar
  15. 15.
    M. Roy, A. Pauschitz, J. Bernardi, T. Koch, and F. Franek, Microstructure and Mechanical Properties of HVOF Sprayed Nanocrystalline Cr3C2-25(Ni20Cr) coating, J. Therm. Spray Technol., 2006, 15(3), p 372-381CrossRefGoogle Scholar
  16. 16.
    Formation of Nanoparticles in Gaseous Phase Reactions and Flame Synthesis in Microgravity Conditions. At
  17. 17.
    B.H. Kear, Z. Kalman, R.K. Sadangi, G. Skandan, J. Colaizzi, and W.E. Mayo, Plasma-Sprayed Nanostructured Al2O3/TiO2 Powders and Coatings, J. Therm. Spray Technol., 2000, 9(4), p 483-487Google Scholar
  18. 18.
    R. McPherson, A Review of Microstructure and Properties of Plasma Sprayed Ceramic Coatings, Surf. Coat. Technol., 1989, 39-40, p 173-181CrossRefGoogle Scholar
  19. 19.
    P. Fauchais, G. Montavon, and G. Bertran, From Powders to Thermally Sprayed Coatings, J. Therm. Spray Technol., 2010, 19(1-2), p 56-80CrossRefGoogle Scholar
  20. 20.
    H.F. Chen, Y.F. Gao, Y. Liu, and H.J. Luo, Coprecipitation Synthesis and Thermal Conductivity of La2Zr2O7, J. Alloys Compd., 2009, 480(2), p 843-848CrossRefGoogle Scholar
  21. 21.
    M.H. Hu, S.Q. Guo, T. Tomimatsu, Y. Ikuhara, and Y. Kagawa, TEM Study on Microstructure of Thermally Grown Oxide in EB-PVD Thermal Barrier Coatings, Surf. Coat. Technol., 2006, 200(20-21), p 6130-6136CrossRefGoogle Scholar
  22. 22.
    R.S. Lima, A. Kucuk, and C.C. Berndt, Evaluation of Microhardness and Elastic Modulus of Thermally Sprayed Nanostructured Zirconia Coatings, Surf. Coat. Technol., 2001, 135(2-3), p 166-172CrossRefGoogle Scholar
  23. 23.
    R.S. Lima, U. Senturk, C.C. Berndt, and C.R.C. Lima, Proceedings of the United Thermal Spray Conference, E. Lugscheider and P.A. Krammer, Ed., Verlag fuer Schweissen und verwandte Verfahren DVS-Verlag GmbH, Dusseldorf, Germany, 1999, p 190Google Scholar
  24. 24.
    E. Meillot and G. Balmigere, Plasma Spraying Modeling: Particle Injection in a Time-Fluctuating Plasma Jet, Surf. Coat. Technol., 2008, 202(18), p 4465-4469CrossRefGoogle Scholar
  25. 25.
    J. Singh, D.E. Wolfe, R.A. Miller, J.I. Eldridge, and D.M. Zhu, Tailored Microstructure of Zirconia and Hafnia-Based Thermal Barrier Coatings with Low Thermal Conductivity and High Hemispherical Reflectance by EB-PVD, J. Mater. Sci., 2004, 39(6), p 1975-1985CrossRefGoogle Scholar
  26. 26.
    O.J. Durá, E. Bauer, L. Vázquez, and M.A. López de la Torre, Depressed Thermal Conductivity of Mechanically Alloyed Nanocrystalline 10 mol% Yttria-Stabilized Zirconia, J. Phys. D: Appl. Phys., 2010, 43, p 105407 (6 pp)Google Scholar
  27. 27.
    G. Soyez, J.A. Eastman, L.J. Thompson, R.J. DiMelfi, G.-R. Bai, P.M. Baldo, A.W. McCormick, A.A. Elmustafa, M.F. Tambwe, and D.S. Stone, Grain-Size-Dependent Thermal Conductivity of Nanocrystalline Yttria-Stabilized Zirconia Films Grown by Metal-Organic Chemical Vapor Deposition, Appl. Phys. Lett., 2000, 77(8), p 1155CrossRefGoogle Scholar
  28. 28.
    H.S. Yang, G.-R. Bai, L.J. Thompson, and J.A. Eastman, Interfacial Thermal Resistance in Nanocrystalline Yttria-Stabilized Zirconia, Acta Mater., 2002, 50, p 2309-2317CrossRefGoogle Scholar
  29. 29.
    Z.R. Zhong and X.W. Wang, Thermal Transport in Nanocrystalline Materials, J. Appl. Phys., 2006, 100(4), p 044310CrossRefGoogle Scholar
  30. 30.
    Z.Y. Deng, J.M.F. Ferreira, Y. Tanaka, and Y. Isoda, Microstructure and Thermal Conductivity of Porous ZrO2 Ceramics, Acta Mater., 2007, 55(11), p 3663-3669CrossRefGoogle Scholar
  31. 31.
    H.B. Guo, R. Vaßen, and D. Stöver, Thermophysical Properties and Thermal Cycling Behavior of Plasma Sprayed Thick Thermal Barrier Coatings, Surf. Coat. Technol., 2005, 192(1), p 48-56CrossRefGoogle Scholar

Copyright information

© ASM International 2011

Authors and Affiliations

  1. 1.State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics (SIC)Chinese Academy of Sciences (CAS)ShanghaiChina
  2. 2.Graduate University of Chinese Academy of SciencesBeijingChina
  3. 3.The Key Laboratory of Inorganic Coating Materials, Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiChina

Personalised recommendations