Skip to main content
Log in

Bioactive Glass-Ceramic Coatings Synthesized by the Liquid Precursor Plasma Spraying Process

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In this study, the liquid precursor plasma spraying process was used to manufacture P2O5-Na2O-CaO-SiO2 bioactive glass-ceramic coatings (BGCCs), where sol and suspension were used as feedstocks for plasma spraying. The effect of precursor and spray parameters on the formation and crystallinity of BGCCs was systematically studied. The results indicated that coatings with higher crystallinity were obtained using the sol precursor, while nanostructured coatings predominantly consisting of amorphous phase were synthesized using the suspension precursor. For coatings manufactured from suspension, the fraction of the amorphous phase increased with the increase in plasma power and the decrease in liquid precursor feed rate. The coatings synthesized from the suspension plasma spray process also showed a good in vitro bioactivity, as suggested by the fast apatite formation when soaking into SBF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L.L. Hench, R.J. Splinter, W.C. Allen, and T.K. Greenlee, Bonding Mechanisms at the Interface of Ceramic Prosthetic Materials, J. Biomed. Mater. Res., 2004, 5(6), p 117-141

    Google Scholar 

  2. S. Hattar, A. Asselin, D. Greenspan, M. Oboeuf, A. Berdal, and J.M. Sautier, Potential of Biomimetic Surfaces to Promote In Vitro Osteoblast-Like Cell Differentiation, Biomaterials, 2005, 26(8), p 839-848

    CAS  Google Scholar 

  3. E. Jallot, H. Benhayoune, L. Kilian, J.L. Irigaray, G. Balossier, and P. Bonhomme, Growth and Dissolution of Apatite Precipitates Formed on the Surface of a Bioactive Glass Coating, J. Phys. D Appl. Phys., 2000, 33, p 2775-2780

    CAS  Google Scholar 

  4. L.L. Hench and O. Andersson, Bioactive Glasses, An Introduction to Bioceramics, L.L. Hench and J. Wilson, Eds., World Scientific, 1993, p 41-46

  5. M.H. Fathi and A. Doost Mohammadi, Preparation and Characterization of Sol-Gel Bioactive Glass Coating for Improvement of Biocompatibility of Human Body Implant, Mater. Sci. Eng. A, 2008, 474(1-2), p 128-133

    Google Scholar 

  6. P. Galliano, J.J. De Damborenea, M.J. Pascual, and A. Durán, Sol-Gel Coatings on 316L Steel for Clinical Applications, J. Sol-Gel. Sci. Technol., 1998, 13(1), p 723-727

    CAS  Google Scholar 

  7. G. Polzonetti, G. Iucci, A. Frontini, G. Infante, C. Furlani, L. Avigliano, D. Del Principe, G. Palumbo, and N. Rosato, Surface Reactions of a Plasma-Sprayed CaO-P2O5-SiO2-Based Glass with Albumin, Fibroblasts and Granulocytes Studied by XPS, Fluorescence and Chemiluminescence, Biomaterials, 2000, 21(15), p 1531-1539

    CAS  Google Scholar 

  8. T.M. Lee, E. Chang, B.C. Wang, and C.Y. Yang, Characteristics of Plasma-Sprayed Bioactive Glass Coatings on Ti-6Al-4V Alloy: An In Vitro Study, Surf. Coat. Technol., 1996, 79(1-3), p 170-177

    CAS  Google Scholar 

  9. D. Tanaskovic, B. Jokic, G. Socol, A. Popescu, I.N. Mihailescu, R. Petrovic, and D. Janackovic, Synthesis of Functionally Graded Bioactive Glass-Apatite Multistructures on Ti Substrates by Pulsed Laser Deposition, Appl. Surf. Sci., 2007, 254(4), p 1279-1282

    CAS  Google Scholar 

  10. D. Stojanovic, B. Jokic, D. Veljovic, R. Petrovic, P.S. Uskokovic, and D. Janackovic, Bioactive Glass-Apatite Composite Coating for Titanium Implant Synthesized by Electrophoretic Deposition, J. Eur. Ceram. Soc., 2007, 27(2-3), p 1595-1599

    CAS  Google Scholar 

  11. A.O. Paiva, M.G. Duarte, M.H.V. Fernandes, M.H. Gil, and N.G. Costa, In Vitro Studies of Bioactive Glass/Polyhydroxybutyrate Composites, Mater. Res., 2006, 9, p 417-423

    CAS  Google Scholar 

  12. N.P. Padture, K.W. Schlichting, T. Bhatia, A. Ozturk, B. Cetegen, E.H. Jordan, M. Gell, S. Jiang, T.D. Xiao, and P.R. Strutt, Towards Durable Thermal Barrier Coatings with Novel Microstructures Deposited by Solution-Precursor Plasma Spray, Acta Mater., 2001, 49(12), p 2251-2257

    CAS  Google Scholar 

  13. J. Karthikeyan, C.C. Berndt, J. Tikkanen, J.Y. Wang, A.H. King, and H. Herman, Preparation of Nanophase Materials by Thermal Spray Processing of Liquid Precursors, Nanostruct. Mater., 1997, 9(1-8), p 137-140

    CAS  Google Scholar 

  14. P. Fauchais, R. Etchart-Salas, V. Rat, J.F. Coudert, N. Caron, and K. Wittmann-Ténèze, Parameters Controlling Liquid Plasma Spraying: Solutions, Sols, or Suspensions, J. Therm. Spray Technol., 2008, 17(1), p 31-59

    CAS  Google Scholar 

  15. R. Jaworski, C. Pierlot, L. Pawlowski, M. Bigan, and M. Martel, Design of the Synthesis of Fine HA Powder for Suspension Plasma Spraying, Surf. Coat. Technol., 2009, 203(15), p 2092-2097

    CAS  Google Scholar 

  16. S. Kozerski, L. Pawlowski, R. Jaworski, F. Roudet, and F. Petit, Two Zones Microstructure of Suspension Plasma Sprayed Hydroxyapatite Coatings, Surf. Coat. Technol., 2010, 204(9-10), p 1380-1387

    CAS  Google Scholar 

  17. Y. Huang, L. Song, T. Huang, X. Liu, Y. Xiao, Y. Wu, F. Wu, and Z. Gu, Characterization and Formation Mechanism of Nano-structured Hydroxyapatite Coatings Deposited by the Liquid Precursor Plasma Spraying Process, Biomed. Mater., 2010, 5(5), p 054113

    Google Scholar 

  18. D. Chen, E.H. Jordan, and M. Gell, Suspension Plasma Sprayed Composite Coating Using Amorphous Powder Feedstock, Appl. Surf. Sci., 2009, 255(11), p 5935-5938

    CAS  Google Scholar 

  19. E.H. Jordan, L. Xie, M. Gell, N.P. Padture, B. Cetegen, A. Ozturk, X. Ma, J. Roth, T.D. Xiao, and P.E.C. Bryant, Superior Thermal Barrier Coatings Using Solution Precursor Plasma Spray, J. Therm. Spray Technol., 2004, 13(1), p 57-65

    CAS  Google Scholar 

  20. P. Fauchais, V. Rat, J.F. Coudert, R. Etchart-Salas, and G. Montavon, Operating Parameters for Suspension and Solution Plasma-Spray Coatings, Surf. Coat. Technol., 2008, 202, p 4309-4317

    CAS  Google Scholar 

  21. R. Tomaszek, Z. Znamirowski, L. Pawlowski, and J. Zdanowski, Effect of Conditioning on Field Electron Emission of Suspension Plasma Sprayed TiO2 Coatings, Vacuum, 2007, 81(10), p 1278-1282

    CAS  Google Scholar 

  22. G. Bolelli, J. Rauch, V. Cannillo, A. Killinger, L. Lusvarghi, and R. Gadow, Investigation of High-Velocity Suspension Flame Sprayed (HVSFS) Glass Coatings, Mater. Lett., 2008, 62(17-18), p 2772-2775

    CAS  Google Scholar 

  23. G. Bolelli, V. Cannillo, R. Gadow, A. Killinger, L. Lusvarghi, and J. Rauch, Microstructural and In Vitro Characterisation of High-Velocity Suspension Flame Sprayed (HVSFS) Bioactive Glass Coatings, J. Eur. Ceram. Soc., 2009, 29(11), p 2249-2257

    CAS  Google Scholar 

  24. T. Kokubo, A/W Glass-Ceramic: Processing and Properties, An Introduction to Bioceramics, L.L. Hench and J. Wilson, Eds., World Scientific, 1993, p 75-88

  25. T. Kokubo and H. Takadama, How Useful is SBF in Predicting In Vivo Bone Bioactivity?, Biomaterials, 2006, 27(15), p 2907-2915

    CAS  Google Scholar 

  26. T. Kokubo, S. Ito, Z.T. Huang, T. Hayashi, S. Sakka, T. Kitsugi, and T. Yamamuro, Ca, P-Rich Layer Formed on High-Strength Bioactive Glass-Ceramic AW, J. Biomed. Mater. Res., 1990, 24(3), p 331-343

    CAS  Google Scholar 

  27. L. Lefebvre, J. Chevalier, L. Gremillard, R. Zenati, G. Thollet, D. Bernache-Assolant, and A. Govin, Structural Transformations of Bioactive Glass 45S5 with Thermal Treatments, Acta Mater., 2007, 55(10), p 3305-3313

    CAS  Google Scholar 

  28. D.C. Clupper, J.J. Mecholsky, G.P. LaTorre, and D.C. Greenspan, Bioactivity of Tape Cast and Sintered Bioactive Glass-Ceramic in Simulated Body Fluid, Biomaterials, 2002, 23(12), p 2599-2606

    CAS  Google Scholar 

  29. M. Palard, E. Champion, and S. Foucaud, Synthesis of Silicated Hydroxyapatite Ca10(PO4)6-x (SiO4) x (OH)2-x , J. Solid State Chem., 2008, 181(8), p 1950-1960

    CAS  Google Scholar 

  30. X. Yan, X. Huang, C. Yu, H. Deng, Y. Wang, Z. Zhang, S. Qiao, G. Lu, and D. Zhao, The In Vitro Bioactivity of Mesoporous Bioactive Glasses, Biomaterials, 2006, 27(18), p 3396-3403

    CAS  Google Scholar 

  31. Z.H. Zhou, J.M. Ruan, J.P. Zou, and Z.C. Zhou, Preparation and Bioactivity of Sol-Gel Macroporous Bioactive Glass, J. Univ. Sci. Technol. B, 2008, 15(3), p 290-296

    CAS  Google Scholar 

  32. S. Jalota, S.B. Bhaduri, and A.C. Tas, Using a Synthetic Body Fluid (SBF) Solution of 27 mM HCO3 to Make Bone Substitutes More Osteointegrative, Mater. Sci. Eng. C, 2008, 28, p 129-140

    CAS  Google Scholar 

  33. F. Rubio, J. Rubio, and J.L. Oteo, A DSC Study of the Drying Process of TEOS Derived Wet Silica Gels, Thermochim. Acta, 1997, 307(1), p 51-56

    CAS  Google Scholar 

  34. A. Meiszterics and K. Sinkó, Sol-Gel Derived Calcium Silicate Ceramics, Colloids Surf. Physicochem. Eng. Aspects, 2008, 319(1-3), p 143-148

    CAS  Google Scholar 

  35. M. Vallet-Regí and A. Rámila, New Bioactive Glass and Changes in Porosity During the Growth of a Carbonate Hydroxyapatite Layer on Glass Surfaces, Chem. Mater., 2000, 12(4), p 961-965

    Google Scholar 

  36. P. Guanabara, A. Rodrigues, and O. Peitl, Bioactivity Study of Glass-Ceramics with Various Crystalline Fractions Obtained by Controlled Crystallization, Mater. Sci. Eng. C, 2004, 24(5), p 689-691

    Google Scholar 

  37. T. Berthier, V.M. Fokin, and E.D. Zanotto, New Large Grain, Highly Crystalline, Transparent Glass-Ceramics, J. Non-Cryst. Solids, 2008, 354(15-16), p 1721-1730

    CAS  Google Scholar 

  38. O.P. Filho, G.P. La Torre, and L.L. Hench, Effect of Crystallization on Apatite-Layer Formation of Bioactive Glass 45S5, J. Biomed. Mater. Res., 1996, 30(4), p 509-514

    Google Scholar 

  39. H. Arstila, L. Hupa, K.H. Karlsson, and M. Hupa, Influence of Heat Treatment on Crystallization of Bioactive Glasses, J. Non-Cryst. Solids, 2008, 354, p 722-728

    CAS  Google Scholar 

  40. O. Peitl, E. Dutra Zanotto, and L.L. Hench, Highly Bioactive P2O5-Na2O-CaO-SiO2 Glass-Ceramics, J. Non-Cryst. Solids, 2001, 292(1-3), p 115-126

    CAS  Google Scholar 

  41. S. Basu and B. Cetegen, Modeling of Liquid Ceramic Precursor Droplets in a High Velocity Oxy-fuel Flame Jet, Acta Mater., 2008, 56(12), p 2750-2759

    CAS  Google Scholar 

  42. D. Chen, E.H. Jordan, and M. Gell, Effect of Solution Concentration on Splat Formation and Coating Microstructure Using the Solution Precursor Plasma Spray Process, Surf. Coat. Technol., 2008, 202, p 2132-2138

    CAS  Google Scholar 

  43. D.E. Crawmer, Handbook of Thermal Spray Technology, J.R. Davis Ed., ASM International, 2004, p 62-69

  44. G. Bolelli, L. Lusvarghi, T. Manfredini, E. Parsini, and C. Siligardi, BAS, CMAS and CZAS Glass Coatings Deposited by Plasma Spraying, J. Eur. Ceram. Soc., 2007, 27(16), p 4575-4588

    CAS  Google Scholar 

  45. P. Li, Q. Yang, F. Zhang, and T. Kokubo, The Effect of Residual Glassy Phase in a Bioactive Glass-Ceramic on the Formation of Its Surface Apatite Layer In Vitro, J. Mater. Sci. Mater. Med., 1992, 3(6), p 452-456

    CAS  Google Scholar 

  46. F.H. Lin and M.H. Hon, A Study on Bioglass Ceramics in the Na2O-CaO-SiO2-P2O5 System, J. Mater. Sci., 1988, 23, p 4295-4299

    CAS  Google Scholar 

  47. D.C. Clupper and L.L. Hench, Crystallization Kinetics of Tape Cast Bioactive Glass 45S5, J. Non-Cryst. Solids, 2003, 318(1-2), p 43-48

    CAS  Google Scholar 

  48. D.C. Clupper, L.L. Hench, and J.J. Mecholsky, Strength and Toughness of Tape Cast Bioactive Glass 45S5 Following Heat Treatment, J. Eur. Ceram. Soc., 2004, 24(10-11), p 2929-2934

    CAS  Google Scholar 

  49. K. Yu, Y. Guo, X. Ding, J. Zhao, and Z. Wang, Synthesis of Silica Nanocubes by Sol-Gel Method, Mater. Lett., 2005, 59(29-30), p 4013-4015

    CAS  Google Scholar 

  50. M. Bohner and J. Lemaitre, Can Bioactivity be Tested In Vitro with SBF Solution?, Biomaterials, 2009, 30, p 2175-2179

    CAS  Google Scholar 

  51. P. Sepulveda, J.R. Jones, and L.L. Hench, In Vitro Dissolution of Melt-Derived 45S5 and Sol-Gel Derived 58S Bioactive Glasses, J. Biomed. Mater. Res., 2002, 61(2), p 301-311

    CAS  Google Scholar 

Download references

Acknowledgments

The present research was supported by the National High Technology Research and Development Program (863 Program) of P.R. China (No. 2006AA02A135), and Sichuan Youth Science and Technology Foundation of P.R. China (No. 08ZQ026-022). The authors also would like to thank Analysis and Testing Center of Sichuan University for help with FTIR tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, Y., Song, L., Liu, X. et al. Bioactive Glass-Ceramic Coatings Synthesized by the Liquid Precursor Plasma Spraying Process. J Therm Spray Tech 20, 560–568 (2011). https://doi.org/10.1007/s11666-010-9594-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-010-9594-9

Keywords

Navigation