Journal of Thermal Spray Technology

, Volume 20, Issue 1–2, pp 344–350 | Cite as

Microstructure and Electrochemical Behavior of Fe-Based Amorphous Metallic Coatings Fabricated by Atmospheric Plasma Spraying

  • Z. ZhouEmail author
  • L. Wang
  • D. Y. He
  • F. C. Wang
  • Y. B. Liu
Peer Reviewed


A Fe48Cr15Mo14C15B6Y2 alloy with high glass forming ability (GFA) was selected to prepare amorphous metallic coatings by atmospheric plasma spraying (APS). The as-deposited coatings present a dense layered structure and low porosity. Microstructural studies show that some nanocrystals and a fraction of yttrium oxides formed during spraying, which induced the amorphous fraction of the coatings decreasing to 69% compared with amorphous alloy ribbons of the same component. High thermal stability enables the amorphous coatings to work below 910 K without crystallization. The results of electrochemical measurement show that the coatings exhibit extremely wide passive region and relatively low passive current density in 3.5% NaCl and 1 mol/L HCl solutions, which illustrate their superior ability to resist localized corrosion. Moreover, the corrosion behavior of the amorphous coatings in 1 mol/L H2SO4 solution is similar to their performance under conditions containing chloride ions, which manifests their flexible and extensive ability to withstand aggressive environments.


atmospheric plasma spraying electrochemical behavior Fe-based amorphous coating microstructure 


  1. 1.
    A. Inoue, T. Zhang, and T. Masumoto, Production of Amorphous Cylinder and Sheet of La55Al25Ni20 Alloy by a Metallic Mold Casting Method, Mater. Trans. JIM, 1990, 31(5), p 425-428Google Scholar
  2. 2.
    T. Zhang, A. Inoue, and T. Masumoto, Amorphous Zr-Al-TM (TM = Co, Ni, Cu) Alloys with Significant Supercooled Liquid Region of Over 100 K, Mater. Trans. JIM, 1991, 32(11), p 1005-1010Google Scholar
  3. 3.
    A. Peker and W.L. Johnson, A highly Processable Metallic Glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5, Appl. Phys. Lett., 1993, 63(17), p 2342-2344CrossRefGoogle Scholar
  4. 4.
    A. Inoue, T. Nakamura, N. Nishiyama, and T. Masumoto, Mg-Cu-Y Bulk Amorphous Alloys with High Tensile Strength Produced by a High-Pressure Die Casting Method, Mater. Trans. JIM, 1992, 33(10), p 937-945Google Scholar
  5. 5.
    A.L. Greer, Metallic Glasses, Science, 1995, 267(5206), p 1947-1953CrossRefGoogle Scholar
  6. 6.
    A.P. Wang, X.C. Chang, W.L. Hou, and J.Q. Wang, Preparation and Corrosion Behaviour of Amorphous Ni-Based Alloy Coatings, Mater. Sci. Eng. A, 2007, 449-451(25), p 277-280Google Scholar
  7. 7.
    M. Cherigui, N.E. Fenineche, and C. Coddet, Structural Study of Iron-Based Microstructured and Nanostructured Powders Sprayed by HVOF Thermal Spraying, Surf. Coat. Technol., 2005, 192(1), p 19-26CrossRefGoogle Scholar
  8. 8.
    Y.P. Wu, P.H. Lin, G.Z. Xie, J.H. Hu, and M. Cao, Formation of Amorphous and Nanocrystalline Phases in High Velocity Oxy-Fuel Thermally Sprayed a Fe-Cr-Si-B-Mn Alloy, Mater. Sci. Eng. A, 2006, 430(1-2), p 34-39CrossRefGoogle Scholar
  9. 9.
    F.T. Parker, F.E. Spada, A.E. Berkowitz, K.S. Vecchio, E.J. Lavernia, and R. Rodriguez, Thick Amorphous Ferromagnetic Coatings via Thermal Spraying of Spark-Eroded Powder, Mater. Lett., 2001, 48(3-4), p 184-187CrossRefGoogle Scholar
  10. 10.
    K. Kishitake, H. Era, and F. Otsubo, Characterization of Plasma Sprayed Fe-17Cr-38Mo-4C Amorphous Coatings Crystallizing at Extremely High Temperature, J. Therm. Spray Technol., 1996, 5(3), p 283-286CrossRefGoogle Scholar
  11. 11.
    K. Kishitake, H. Era, and F. Otsubo, Thermal-Sprayed Fe-10Cr-13P-7C Amorphous Coatings Possessing Excellent Corrosion Resistance, J. Therm. Spray Technol., 1996, 5(4), p 476-482CrossRefGoogle Scholar
  12. 12.
    F. Otsubo and K. Kishitake, Corrosion Resistance of Fe-16%Cr-30%Mo-(C, B, P) Amorphous Coatings Sprayed by HVOF and APS Processes, Mater. Trans., 2005, 46(1), p 80-83CrossRefGoogle Scholar
  13. 13.
    H. Choi, S. Yoon, G. Kim, H. Jo, and C. Lee, Phase Evolutions of Bulk Amorphous NiTiZrSiSn Feedstock During Thermal and Kinetic Spraying Processes, Scr. Mater., 2005, 53(1), p 125-130CrossRefGoogle Scholar
  14. 14.
    S. Yoon, H.J. Kim, and C. Lee, Deposition Behavior of Bulk Amorphous NiTiZrSiSn According to the Kinetic and Thermal Energy Levels in the Kinetic Spraying Process, Surf. Coat. Technol., 2006, 200(20-21), p 6022-6029CrossRefGoogle Scholar
  15. 15.
    A.P. Wang, T. Zhang, and J.Q. Wang, Ni-Based Fully Amorphous Metallic Coating with High Corrosion Resistance, Philos. Mag. Lett., 2006, 86(1), p 5-11CrossRefGoogle Scholar
  16. 16.
    B. Jodoin, P. Richer, E. Sansoucy, and E.J. Lavernia, Cold Gas Dynamic Spraying of Iron-Base Amorphous Alloy, J. Therm. Spray Technol., 2006, 15(4), p 495-500CrossRefGoogle Scholar
  17. 17.
    S. Cadney and M. Brochu, Formation of Amorphous Zr41.2Ti13.8Ni10Cu12.5Be22.5 Coatings via the Electrospark Deposition Process, Intermetallics, 2008, 16(4), p 518-523CrossRefGoogle Scholar
  18. 18.
    X.L. Wu and Y.S. Hong, Fe-Based Thick Amorphous-Alloy Coating by Laser Cladding, Surf. Coat. Technol., 2001, 141(2-3), p 141-144CrossRefGoogle Scholar
  19. 19.
    A. Singh, S.R. Bakshi, A. Agarwal, and S.P. Harimkar, Microstructure and Tribological Behavior of Spark Plasma Sintered Iron-Based Amorphous Coatings, Mater. Sci. Eng. A, 2010, 527(18-19), p 5000-5007CrossRefGoogle Scholar
  20. 20.
    C. Moreau, P. Cielo, M. Lamontagne, S. Dallaire, J.C. Krapez, and M. Vardelle, Temperature Evolution of Plasma-Sprayed Niobium Particles Impacting on a Substrate, Surf. Coat. Technol., 1991, 46(2), p 173-187CrossRefGoogle Scholar
  21. 21.
    B.L. Shen, A. Inoue, and C.T. Chang, Superhigh Strength and Good Soft-Magnetic Properties of (Fe, Co)-B-Si-Nb Bulk Glassy Alloys with High Glass-Forming Ability, Appl. Phys. Lett., 2004, 85(21), p 4911-4913CrossRefGoogle Scholar
  22. 22.
    S.J. Pang, T. Zhang, and K. Asami, Bulk Glassy Fe-Cr-Mo-C-B Alloys with High Corrosion Resistance, Corros. Sci., 2002, 44(8), p 1847-1856CrossRefGoogle Scholar
  23. 23.
    A. Inoue, A. Makino, and T. Mizushima, Ferromagnetic Bulk Glassy Alloys, J. Magn. Magn. Mater., 2000, 215, p 246-252CrossRefGoogle Scholar
  24. 24.
    V. Ponnambalam, S.J. Poon, G.J. Shiflet, V.M. Keppens, R. Taylor, and G. Petculescu, Synthesis of Iron-Based Bulk Metallic Glasses as Nonferromagnetic Amorphous Steel Alloys, Appl. Phys. Lett., 2003, 83(6), p 1131-1133CrossRefGoogle Scholar
  25. 25.
    Z. Zhou, L. Wang, F.C. Wang, H.F. Zhang, Y.B. Liu, and S.H. Xu, Formation and Corrosion Behavior of Fe-Based Amorphous Metallic Coatings by HVOF Thermal Spraying, Surf. Coat. Technol., 2009, 204(5), p 563-570CrossRefGoogle Scholar
  26. 26.
    S. Ozbilen, Satellite Formation Mechanism in Gas Atomized Powders, Powder Metall., 1999, 42(1), p 70-78CrossRefGoogle Scholar
  27. 27.
    A. Inoue, High Strength Bulk Amorphous Alloys with Low Critical Cooling Rates, Mater. Trans. JIM, 1995, 36(7), p 866-875Google Scholar
  28. 28.
    V. Ponnambalam, S.J. Poon, and G.J. Shiflet, Fe-Based Bulk Metallic Glasses with Diameter Thickness Larger Than One Centimeter, J. Mater. Res., 2004, 19(5), p 1320-1323CrossRefGoogle Scholar
  29. 29.
    V.V. Sobolev and J.M. Guilemany, Investigation of Coating Porosity Formation During High Velocity Oxy-Fuel (HVOF) Spraying, Mater. Lett., 1994, 18(5-6), p 304-308CrossRefGoogle Scholar
  30. 30.
    H.K. Do, M.P. Jin, S.P. Joon, H.N. Jong, and H.K. Dong, Effect of Y Addition on Thermal Stability and the Glass Forming Ability in Fe-Nb-B-Si Bulk Glassy Alloy, Mater. Sci. Eng. A, 2006, 435-436, p 425-428CrossRefGoogle Scholar
  31. 31.
    S.J. Pang, T. Zhang, K. Asami, and A. Inoue, Synthesis of Fe-Cr-Mo-C-B-P Bulk Metallic Glasses with High Corrosion Resistance, Acta Mater., 2002, 50(3), p 489-497CrossRefGoogle Scholar
  32. 32.
    J. Kawakita, S. Kuroda, T. Fukushima, and T. Kodama, Improvement of Corrosion Resistance of Oxyfuel-Sprayed Stainless Steel Coatings by Addition of Molybdenum, J. Therm. Spray Technol., 2005, 14(2), p 224-230CrossRefGoogle Scholar

Copyright information

© ASM International 2010

Authors and Affiliations

  • Z. Zhou
    • 1
    • 2
    Email author
  • L. Wang
    • 2
  • D. Y. He
    • 1
  • F. C. Wang
    • 2
  • Y. B. Liu
    • 2
  1. 1.College of Materials Science and EngineeringBeijing University of TechnologyBeijingChina
  2. 2.School of Materials Science and EngineeringBeijing Institute of TechnologyBeijingChina

Personalised recommendations