Skip to main content

Infrared Radiation Coatings Fabricated by Plasma Spray


Infrared radiation coatings were prepared by plasma spray on the copper sheet. The structure and emissivity were examined by x-ray diffraction and infrared radiant instrument, respectively. The results show that an appropriate addition of TiO2 (5-15 wt.%) to NiO and Cr2O3 leads to high emissivity of coating with (Cr0.88Ti0.12)2O3 and NiCr2O4 phase. However, more (20-30 wt.%) will frustrate the formation of NiCr2O4 and ultimately decrease the emissivity. Moreover, the coating prepared by plasma spray endures a long working time without emissivity decrease.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. 1.

    I. Benko, High Infrared Emissivity Coating for Energy Conservation and Protection of Inner Surfaces in Furnaces, Int. J. Global Energy Issues, 2002, 17(1-2), p 60-61

    Google Scholar 

  2. 2.

    T. Kleeb and J. Olver, High-Emissivity Coatings for Energy Savings in Industrial Furnaces, Ind. Heat., 2007, 74(6), p 57-61

    Google Scholar 

  3. 3.

    R. Scott and S.D. Cherico, High-Emissivity Coating Technology Improves Annealing Furnace Efficiency, Iron Steel Technol., 2007, 4(5), p 319-324

    CAS  Google Scholar 

  4. 4.

    P.C. Sheil and T.R. Kleeb, High-emissivity coatings for improved performance of electric arc furnaces, Iron Steel Technol., 2006, 3(2), p 49-53

    Google Scholar 

  5. 5.

    B. Rousseau, M. Chabin, and P. Echegut, High Emissivity of a Rough Pr2NiO4 Coating, Appl. Phys. Lett., 2001, 79(22), p 3633-3635

    Article  ADS  CAS  Google Scholar 

  6. 6.

    A. Makris 1994 Function of Cermet Elements in Heat Treating Furnaces, Ind. Heat., 61(11), 46-50

    Google Scholar 

  7. 7.

    R.K. Bird, T.A. Wallace, and S.N. Sankaran 2004 Development of Protective Coatings for High-Temperature Metallic Materials, J. Spacecr. Rockets, 41(2), 213-220

    Article  ADS  CAS  Google Scholar 

  8. 8.

    X. Jiang, M. Soltani, and D. Mishkinis, Development of La1−xSrxMnO3 Thermochromic Coating for Smart Spacecraft Thermal Radiator Application, Eur. Space Agency, 2006, (616), p 6

  9. 9.

    S. Feng, X. Lu, and S. Xu, Research Status and Developing Trend of the Infrared Radiation Energy Saving Coatings Used at High Temperature, Ind. Heat., 2007, 36(1), p 10-15 (in Chinese)

    CAS  Google Scholar 

  10. 10.

    W. Tian, Y. Wang, and Y. Yang, Fretting Wear Behavior of Conventional and Nanostructured Al2O3-13 wt.%TiO2 Coatings Fabricated by Plasma Spray, Wear, 2008, 265(11-12), p 1700-1707

    Article  CAS  Google Scholar 

  11. 11.

    H.C. Cheng, Z.X. Li, and Y.W. Shi, Microstructure and Wear Resistance of Al2O3-TiB2 Composite Coating Deposited by Axial Plasma Spraying, Surf. Eng., 2008, 24(6), p 452-457

    Article  CAS  Google Scholar 

  12. 12.

    G.M. Ingo and T.D. Caro, Chemical Aspects of Plasma Spraying of Zirconia-Based Thermal Barrier Coatings, Acta Mater., 2008, 56(18), p 5177-5187

    Article  CAS  Google Scholar 

  13. 13.

    T. Patterson, A. Leon, B. Jayaraj, J. Liu, and Y.H. Sohn, Thermal Cyclic Lifetime and Oxidation Behavior of Air Plasma Sprayed CoNiCrAlY Bond Coats for Thermal Barrier Coatings, Surf. Coat. Technol., 2008, 203(5), p 437-441

    Article  CAS  Google Scholar 

  14. 14.

    D. Sporer, A. Refke, M. Dratwinski, M. Dorfman, I. Giovannetti, M. Giannozzi, and M. Bigi, New High-Temperature Seal System for Increased Efficiency of Gas Turbines, Seal. Technol., 2008, 2008(10), p 9-11

  15. 15.

    H.I. Faraoun, T. Grosdidier, J.L. Seichepine, D. Goran, H. Aourag, C. Coddet, J. Zwick, and N. Hopkins, Improvement of Thermally Sprayed Abradable Coating by Microstructure Control, Surf. Coat. Technol., 2006, 201(6), p 2303-2312

    Article  CAS  Google Scholar 

  16. 16.

    X.D. Cheng, D.H. Li, and J.C. Wang, Preparation and Study on NiCr Spinel High Temperature IR Radiation Coatings Material, Paint Coat. Ind., 2006, 36(1), p 24-26 (in Chinese)

    CAS  Google Scholar 

  17. 17.

    Q. Xu, W. Chen, and R. Z. Yuan, Microstructure and Infrared Emissivity at Normal Temperature in Transitional Metal Oxides System Ceramics, J. Wuhan Univ. Technol. Mater. Sci. Ed., 2000, 15(2), p 15-20

    CAS  Google Scholar 

  18. 18.

    H. Zhang, X.Q. Wang, F.P. Liao, et al., Preparation of Ni-Cr Composite Sol and Its Application in High Emissivity Coating, J. Funct. Mater., 2007, 6(38), p 898-901 (in Chinese)

    Google Scholar 

  19. 19.

    H. Takashima, K. Matsubara, and Y. Nishimura, High Efficiency Infrared Radiant Using Transitional Element Oxide J. Ceram. Soc. Jpn., 1982, 90(7), p 373-379

    CAS  Google Scholar 

  20. 20.

    Y. Zhang and D.J. Wen, Relationship between Infrared Radiation and Crystal Structure in Fe-Mn-Co-Cu-O Spinels, Acta Metall. Sin., 2008, 21(1), p 15-20

    ADS  Google Scholar 

Download references


The authors would like to thank Yu Zeng and Ping Ye of China National Infrared & Industrial Electrothermal Products Quality Supervision & Testing Centre, for the infrared normal total emissivity measurements of the coatings.

Author information



Corresponding author

Correspondence to Xudong Cheng.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cheng, X., Duan, W., Chen, W. et al. Infrared Radiation Coatings Fabricated by Plasma Spray. J Therm Spray Tech 18, 448–450 (2009).

Download citation


  • emissivity
  • infrared radiation coating
  • plasma spray