Skip to main content
Log in

Recent Developments in the Field of Thermal Barrier Coatings

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Conventional thermal barrier coating (TBC) systems consist of a duplex structure with a metallic bondcoat and a ceramic, heat-isolative topcoat. Several recent research activities are concentrating on developing improved bondcoat or topcoat materials; for the topcoat especially, those with reduced thermal conductivity are investigated. Using advanced topcoat materials, the ceramic coating can be further divided into layers with different functions. One example is the double-layer system in which conventional yttria-stabilized zirconia (YSZ) is used as bottom and new materials such as pyrochlores or perovskites are used as topcoat layers. These systems demonstrated an improved temperature capability compared to standard YSZ. In addition, new functions are introduced within the TBCs. These can be sensorial properties that can be used for an improved temperature control or even for monitoring remaining lifetime. Further increased application temperatures will also lead to efforts for a further improvement of the reflectivity of the coatings to reduce the radiative heat transfer through the TBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P. Hancock, and M. Malik, Coating Systems and Technologies for Gas Turbine Applications, Materials for Advanced Power Engineering Part 1, D. Coutsouradis et al., Eds., Kluwer Academic Publishers, Dordrecht, 1994, p 685-704.

    Google Scholar 

  2. R.A. Miller, Current Status of Thermal Barrier Coatings, Surf. Coat. Technol., 1987, 30(1), p 1-11.

    Article  CAS  Google Scholar 

  3. E.C. Subbarao, Advances in Ceramics, Vol 3, Science and Technology of Zirconia, A.H. Heuer and L.W. Hobbs, Ed., The American Ceramic Society, Columbus, OH, 1981, p 1-24.

    Google Scholar 

  4. R. Bürgel and I. Kvernes, Thermal Barrier Coatings, High Temperature Alloys for Gas Turbines and Other Applications, W. Betz et al., Eds., D. Reidel Publishing Co., Dordrecht, 1986, p 327-356

  5. S. Stecura, Optimization of the Ni-Cr-Al-Y/ZrO2-Y2O3 Thermal Barrier System, Adv. Ceram. Mater., 1986, 1(1), p 68-76.

    CAS  Google Scholar 

  6. S. Bose and J. DeMasi-Marcin, Thermal Barrier Coating Experience in Gas Turbine Engines at Pratt & Whitney, J. Therm. Spray Technol., 1997, 6(1), p 99-104.

    Article  ADS  CAS  Google Scholar 

  7. W.A. Nelson and R.M. Orenstein, TBC Experience in Land-Based Gas Turbines, J. Therm. Spray Technol., 1997, 6(2), p 176-180.

    Article  ADS  CAS  Google Scholar 

  8. M.B. Beardsley, Thick Thermal Barrier Coatings for Diesel Engines, J. Therm. Spray Technol., 1997, 6(2), p 181-186.

    Article  ADS  CAS  Google Scholar 

  9. J. Wigren and L. Pejryd, Thermal Barrier Coatings—Why, How, Where and Where To, Proceedings of the 15th International Thermal Spray Conference, May 25-29, 1998, ASM International, Materials Park, OH, 1998, p 1531-1542

  10. J. Thornton, Thermal Barrier Coatings, Mater. Forum, 1998, 22, p 159-181

  11. V. Arnault, R. Mévrel, S. Alpérine, and Y. Jaslier, Eds., La Revue Métallurgie—CIT/Science et Génie des Matériaux, 1999, 96(5), p 585-597

  12. D. Stöver and C. Funke, Directions of the Development of Thermal Barrier Coatings in Energy Applications, J. Mater. Process. Technol., 1999, 92-93, p 195-202.

    Article  Google Scholar 

  13. J.R. Nicholls, Advances in Coating Design for High-Performance Gas Turbines, Mater. Res. Soc. Bull., 2003, 28(9), p 659-670

  14. A. Feuerstein, J. Knapp, T. Taylor, A. Ashary. A. Bolcavage, and N. Hitchman, Technical and Economical Aspects of Current Thermal Barrier Coating Systems for Gas Turbine Engines by Thermal Spray and EBPVD, J. Therm. Spray Technol., 2008, 17(2), p 199-213.

    Article  ADS  CAS  Google Scholar 

  15. J.T. DeMasi, K.D. Sheffler, and M. Ortiz, “Thermal Barrier Coating Life Prediction Model Development, Phase I,” Final Report, Contract NAS3-23944, CR 182230, National Aeronautics and Space Administration, 1989

  16. W.J. Quadakkers, A.K. Tyagi, D. Clemens, R. Anton, and L. Singheiser, The Significance of Bond Coat Oxidation for the Life of TBC Coatings, TMS Annual Meeting, Symposium: High Temperature Coatings III (San Diego, CA), Proc. Elevated Temperature Coatings: Science and Technology III, J.M. Hampikian and N.B. Dahotre, Eds., The Minerals, Metals & Materials Society, 1999, p 119-130.

  17. Y. Itoh and M. Saitoh, Mechanical Properties of Overaluminized MCrAlY Coatings at Room Temperature, J. Eng. Gas Turbines Power, 2005, 127(4), p 807-813.

    Article  CAS  Google Scholar 

  18. L. Ajdelsztajn, F. Tang, G. E. Kim, J. M. Schoenung, G.E. Kim, and V. Provenzano, Synthesis and Oxidation Behaviour of Nanocrystalline MCrAlY Bond Coatings, J. Therm. Spray Technol., 2005, 14(1), p 23-30.

    Article  ADS  CAS  Google Scholar 

  19. R.A. Miller, J.L Smialek, and R.G Garlick, Phase Stability in Plasma-Sprayed Partially Stabilized Zirconia-Yttria, Advances in Ceramics, Vol 3, Science and Technology of Zirconia, A.H. Heuer and L.W. Hobbs, Ed., The American Ceramic Society, Columbus, OH, 1981, p 241-251.

    Google Scholar 

  20. J. Ilavsky and J.K. Stalick, Phase Composition and Its Changes During Annealing of Plasma-Sprayed YSZ, Surf. Coat. Technol., 2000, 127(2-3), p 120-129.

    Article  CAS  Google Scholar 

  21. U. Schulz, Phase Transformation in EB-PVD Yttria Partially Stabilized Zirconia Thermal Barrier Coatings During Annealing, J. Am. Ceram. Soc., 2000, 83(4), p 904-910.

    CAS  Google Scholar 

  22. C. Mercer, J.R. Williams, D.R. Clarke, and A.G. Evans, On a Ferroelastic Mechanism Governing the Toughness of Metastable Tetragonal-prime (t′) Yttria-Stabilized Zirconia, Proc. R. Soc., 2007, 463, p 1393-1408.

    Article  ADS  CAS  Google Scholar 

  23. C. Funke, B. Siebert, R. Vaßen, and D. Stöver, Proc. United Thermal Spray Conference, C.C. Berndt, Ed., Sept 15-19, 1997 (Indianapolis, IN), ASM International, Materials Park, OH, 1998, p 277-284.

  24. S. Paul, A. Cipitria, I.O. Golosnoy, L. Xie, M.R. Dorfman, and T.W. Clyne, Effect of Impurity Content on the Sintering Characteristics of Plasma-Sprayed Zirconia, J. Therm. Spray Technol., 2007, 16(5-6), p 798-803.

    Article  ADS  CAS  Google Scholar 

  25. R.S. Lima and B.R. Marple, Nanostructured YSZ Thermal Barrier Coatings Engineered to Counteract Sintering Effects, Mater. Sci. Eng. A, 2008, 485, p 182-193.

    Article  CAS  Google Scholar 

  26. R.L. Jones, R.F. Reidy, and D. Mess, Scandia, Yttria-Stabilized Zirconia for Thermal Barrier Coatings, Surf. Coat. Technol., 1996, 82(1-2), p 70-76.

    Article  CAS  Google Scholar 

  27. R. Vassen, X. Cao, F. Tietz, D. Basu, and D. Stöver, Zirconates as New Materials for Thermal Barrier Coatings, J. Am. Ceram. Soc., 1999, 83(8), p 2023-2028.

    Article  Google Scholar 

  28. G.W. Schaefer and R. Gadow, Lanthane Aluminate Thermal Barrier Coating, Ceram. Eng. Sci. Proc., 1999, 20(4), p 291-300.

    Article  Google Scholar 

  29. D.R. Clarke and C.G. Levi, Materials Design for the Next Generation Thermal Barrier Coatings, Annu. Rev. Mater. Res., 2003, 33, p 383-417.

    Article  CAS  ADS  Google Scholar 

  30. H. Lehmann, D. Pitzer, G. Pracht, R. Vaßen, and D. Stöver, Thermal Conductivity and Thermal Expansion Coefficients of the Lanthanum Rare-Earth-Element Zirconate System, J. Am. Ceram. Soc., 2004, 86(8), p 1338-1344.

    Article  Google Scholar 

  31. U. Bast and E. Schumann, Development of Novel Oxide Materials for TBCs, Ceram. Eng. Sci. Proc., 2002, 23(4), p 525-532.

    Article  CAS  Google Scholar 

  32. R. Vaßen, G. Pracht, and D. Stöver, New Thermal Barrier Coating Systems with a Graded Ceramic Coating, Proc. International Thermal Spray Conference 2002, Verlag für Schweißen und verwandte Verfahren DVS-Verlag GmbH, Düsseldorf, 2002, p 202-207

  33. R. Vaßen, G. Barbezat, and D. Stöver, Comparison of Thermal Cycling Life of YSZ and La2Zr2O7-Based Thermal Barrier Coatings, Materials for Advanced Power Engineering 2002, J. Lecomte-Becker, M. Carton, F. Schubert, and P.J. Ennis, Eds., Schriften des Forschungszentrum Jülich, Reihe Energietechnik, Vol 21, Part 1, 2002, p 511-521.

  34. R. Vaßen, X. Cao, and D. Stöver, Improvement of New Thermal Barrier Coating Systems Using a Layered or Graded Structure, Ceram. Eng. Sci. Proc., 2001, 22(4), p 435- 442.

    Google Scholar 

  35. U. Schulz, B. Saint-Ramond, O. Lavigne, P. Moretto, A. van Lieshout, A. Borger, and J. Wigren, Low Thermal Conductivity Ceramics for Turbine Blade Thermal Barrier Coating Application, 28th International Conf. Advanced Ceramics and Composites B, Ceram. Eng. Sci. Proc., 2004, 25(4); published online March 26, 2008

  36. R. Vaßen, F. Traeger, and D. Stöver, New Thermal Barrier Coatings Based on Pyrochlore/YSZ Double-Layer Systems, Int. J. Appl. Ceram. Technol., 2004, 1(4), p 351-361.

    Google Scholar 

  37. G. Pracht, R. Vaßen, and D. Stöver, Lanthanum-Lithium Hexaaluminate—A New Material for Thermal Barrier Coatings in Magnetoplumbite Structure—Material and Process Development, Advanced Ceramic Coatings and Interfaces: A Collection of Papers Presented at the 30th International Conference on Advanced Ceramics and Composites, Jan 22-27, 2006 (Cocoa Beach, FL), Ceram. Eng. Sci. Proc., 2006, 27(3), p 87-99

    Google Scholar 

  38. W. Ma, D. E. Mack, R. Vaßen, and D. Stöver, Perovskite-Type Strontium Zirconate as a New Material for Thermal Barrier Coatings, J. Am. Ceram. Soc., 2008, 91(8) p 2630-2635.

    Article  CAS  Google Scholar 

  39. S. Raghavan, H. Wang, R.B. Dinwiddie, W.D. Porter, and M.J. Mayo, The Effect of Grain Size, Porosity and Yttria Content on the Thermal Conductivity of Nanocrystalline Zirconia, Scr. Mater., 1998, 39(8), p 1119-1125.

    Article  CAS  Google Scholar 

  40. J.R. Nicholls, K.J. Lawson, A. Johnstone, and D.S. Rickerby, Low Thermal Conductivity EB-PVD Thermal Barrier Coatings, Mater. Sci. Forum, 2001, 369-372, p 595-606.

    Article  CAS  Google Scholar 

  41. R.W. Trice, Y.J. Su, J.R. Mawdsley, K.T. Faber, A.R. Arellano-López, Hsin Wang, and W.D. Porter, Effect of Heat Treatment on Phase Stability, Microstructure, and Thermal Conductivity of Plasma-Sprayed YSZ, J. Mater. Sci., 2002, 37(11), p 2359-2365.

    Article  CAS  Google Scholar 

  42. J.I. Eldridge, C.M. Spuckler, K.W. Street, and J.R. Markham, Infrared Radiative Properties of Yttria-Stabilized Zirconia Thermal Barrier Coatings, Ceram. Eng. Sci. Proc., 2002, 23(4), p 417-430.

    Article  CAS  Google Scholar 

  43. A. Stuke, R. Carius, J.-L. Marqués, G. Mauer, M. Schulte, D. Sebold, R. Vaßen, and D. Stöver, Optimization of the Reflectivity of Air Plasma Sprayed Ceramic Thermal Barrier Coatings, 31st Int. Cocoa Beach Conference on Advanced Ceramics and Composites (Daytona Beach, FL), J. Salem, Z. Dongming, H.-T. Lin, and U. Schulz, Eds., Ceram. Eng. Sci. Proc., 2007, 28(3), p 99-113

  44. X. Chen, Z. Mutasim, J. Price, J.P. Feist, A.L. Heyes, and S. Seefeldt, Industrial Sensor TBCs: Studies on Temperature Detection and Durability, Int. J. Appl. Ceram. Technol., 2005, 2(5), p 414-421.

    Article  CAS  Google Scholar 

  45. W. Beele and G. Eschendorff, High Speed PVD Thermal Barrier Coatings, Adv. Eng. Mater., 2006, 8(7) p 673-676.

    Article  CAS  Google Scholar 

  46. Toppcoat, Forschungszentrum Jülich, Jülich, Germany, http://www.fz-juelich.de/ief/ief-1//toppcoat/

Download references

Acknowledgments

The authors would like to thank Holger Kaßner for his contribution in the field of suspension plasma sprayed coatings. Also the contributions of the other colleagues in the TBC group are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Vassen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vassen, R., Stuke, A. & Stöver, D. Recent Developments in the Field of Thermal Barrier Coatings. J Therm Spray Tech 18, 181–186 (2009). https://doi.org/10.1007/s11666-009-9312-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-009-9312-7

Keywords

Navigation