Skip to main content
Log in

Erosion, Abrasive, and Friction Wear Behavior of Iron Aluminide Coatings Sprayed by HVOF

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Iron aluminides have been proposed lately as promising materials for wear applications. Many authors have focused their investigations on the friction behavior of FeAl coatings, emphasizing the role of this intermetallic phase as a new matrix to embed ceramic particles and replace the extensively studied WC-Co cermet system for high temperature. However, few of these studies deal with the evaluation of the different tribological properties and their relationship with the coating microstructure. In the present study, the near stoichometric Fe40Al was successfully sprayed by means of high velocity oxy-fuel using different particle size distribution and the tribological behavior was assessed through solid particle erosion, abrasive and dry sliding tests. The wear mechanisms of the deposited coatings are discussed with regard to the observed results. In addition, oxidized samples were tested to evaluate the role of the oxide top layer; also, the powder was previously annealed to produce a coating with an almost fully ordered FeAl structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Westbrook J. H. 1996 Applications of Intermetallic Compounds, MRS Bulletin, 21 (5), 26–28.

    CAS  Google Scholar 

  2. K. Savolainen, J. Mononen, R. Ilola, and H. Hänninen, Materials Selection for High Temperature Applications, Helsinki University of Technology

  3. Tanaka R., 2000 Research and development of ultra-high temperature materials in Japan, Materials at high temperatures, 17, 457–464.

    CAS  Google Scholar 

  4. Adeva P., 1999 Materiales alternativos de las superaleaciones: compuestos intermetálicos. Revista de la Asociación Española de Científicos, 1, 1–6.

    Google Scholar 

  5. Deevi S. C., Sikka V. K., 1996 Nickel and iron aluminides: an overview on properties, processing, and applications, Intermetallics, 4, 357–375.

    Article  CAS  Google Scholar 

  6. C.T. Liu and J.O. Stiegler, Ordered Intermetallics. Properties and Selection: Nonferrous Alloys and Special Purpose Materials, 10th ed., Metals Handbook, ASM International, 1990

  7. Skoglund H., Knutson M., Karlsson B., 2004 Processing of fine-grained mechanically alloyed FeAl, Intermetallics, 12, 977–983.

    Article  CAS  Google Scholar 

  8. Deevi S. C., Sikka V. K., Liu C. T., 1997 Processing, properties and applications of nickel and iron aluminides, Progress in Mater Sci, 42, 177–192.

    Article  CAS  Google Scholar 

  9. Liu C. T., George E. P, Maziasz P. J., Scneibel J. H., 1998 Recent advances in B2 iron aluminide alloys: deformation, fracture and alloy design, Mater Sci Eng A, 258, 84–98.

    Article  Google Scholar 

  10. Guilemany J. M., Cinca N., Dosta S., Lima C.R.C, 2007 High temperature corrosion of Fe-40Al coatings, Intermetallics, 15, 1384–1394.

    Article  CAS  Google Scholar 

  11. Sauthoff, State of Intermetallics Development, Mater and Corr, 1996, 47,p. 589–594.

    Article  CAS  Google Scholar 

  12. B. Xu, Z. Zhu, W. Zhang, and S. Ma, The Microstructure and High-Temperature Sliding Wear Behavior of Fe-Al Coating Produced by High Velocity Arc Spraying, Thermal Spray 2004: Advances in Technology and Application, ASM International, May 10-12, 2004, Osaka, Japan, 2004, p 1129

  13. Xu B., Zhu Z., Ma S., Zhang W., Liu W., 2004 Sliding wear behavior of Fe-Al and Fe-Al/WC coatings prepared by high velocity arc spraying, Wear, 257, 1089–1095.

    Article  CAS  Google Scholar 

  14. Hawk J. A., Alman D. E., 1997 Abrasive wear of intermetallic-based alloys and composites, Mater Sci and Eng A, 239–240, 899–906.

    Article  Google Scholar 

  15. M. Shi-ning, H. Jun-zhi, C. Xue-rong, L. Chang-qing, L. Qian, and J. Hai, Erosion Resistance of Arc Spray Composite Coatings at High Temperature on Boiler Tubes of Pulverixed Coal Fired Power Station, Thermal Spray 2003: Advancing the Science and Applying the Technology, B.R. Marple and C. Moreau, Eds., May 5-8, 2003, Orlando, FL, ASM International, 2003, Vol. 1: p 845; Vol. 2, p 864

  16. Alman D. E., Hawk J. A., Tylczak J. H., Dogan C. P., Wilson R. D., 2001 Wear of iron-aluminide intermetallic alloys and composites by hard particles, Wear, 251, 875–884.

    Article  Google Scholar 

  17. Wang B., Lee S. W., 2000 Erosion-corrosion behaviour of HVOF NiAl-Al2O3 intermetallic-ceramic coating, Wear, 239, 83–90.

    Article  CAS  Google Scholar 

  18. Wang Y., Yan M., 2006 The effect of CeO2 on the erosion and abrasive wear of thermal sprayed FeAl intermetallic alloy coatings, Wear, 11–12, 1201–1207.

    Article  CAS  Google Scholar 

  19. Hearley J. A., Little J. A., Sturgeon A.J., 1999 The erosion behaviour of NiAl intermetallic coatings produced by high velocity oxy-fuel thermal spraying, Wear, 233–235, 328–333.

    Article  CAS  Google Scholar 

  20. R.A. Varin, Intermetallics: Crystal Structures, Encyclopedia of Materials: Science and Technology, 1st. ed., K.H.J. Buschow, Ed., Elsevier Science Publ. Co., 2001, p 9913, ISBN: 0-08-0431526

  21. Boufenghour M., Hayoune A., Hamana D., 2004 Study of the ordered structures in Fe-Al alloys using dilatometric and calorimetric analysis. Journal of Materials Science, 39, 1207–1212.

    Article  CAS  ADS  Google Scholar 

  22. Suriñach S., Amils X., Gialanella S., Lutterotti L., Baro M. D., 1997 Kinetics of reordering in a nanograined FeAl alloy, Materials science forum, 235–238, 415–420

    Article  Google Scholar 

  23. http://www.mecachrome.com/

  24. Muller D. A., Subramanian S., Batson P. E., Silcox J., Sass S. L., 1996 Structure, chemistry and bonding at grain boundaries in Ni3Al-I The role of boron in ductilizing grain boundaries, Acta mater., 44(4), 1637–1645.

    Article  CAS  Google Scholar 

  25. Rico M. M., Greneche J. M., Perez G. A., 2005 Effect of boron on structural and magnetic properties of the Fe60Al40 system prepared by mechanical alloying, Journal of Alloys and Compounds, 398, 26–32.

    Article  CAS  Google Scholar 

  26. Artz E., Behr R., Göhring E., Grahle P., Mason R. P., 1997 Dispersion strengthening of intermetallics, Mater Sci Eng A 234–236, 22–29.

    Article  Google Scholar 

  27. Launois S., Fraczkiewicz A., 1996 Environmental effect on mechanical behavior of reinforced FeAl (40at%Al) alloy, Journal de physique. IV, 6 (2), C2.223–C2.228.

    Article  Google Scholar 

  28. G. Ji, T. Grosdidier, N. Bozzolo and S. Launois, The mechanisms of microstructure formation in a nanostructured oxide dispersion strengthened FeAl alloy obtained by spark plasma sintering, Intermetallics, 2007, 15( 2), p 108–118

    Article  CAS  Google Scholar 

  29. Guilemany J. M., Cinca N., Lima C. R. C., Miguel J. R., 2006 Studies of Fe40Al coatings obtained by High Velocity Oxy-Fuel. Surf & Coat Tech, 201, 2072–2079.

    Article  CAS  Google Scholar 

  30. Xia J., Li C. X., Dong H., 2005 Thermal oxidation treatment of B2 iron aluminide for improved wear resistance, Wear , 258, 1804–1812.

    Article  CAS  Google Scholar 

  31. Gang J., Morniroli J., Grosidider T., 2003 Nanostructures in thermal spray coatings, Scripta mater, 48, 1599–1604.

    Article  CAS  Google Scholar 

  32. Jordan J. L., Deevi S. C., 2003 Vacancy formation and effects in FeAl, Intermetallics, 11, 507–528.

    Article  CAS  Google Scholar 

  33. Skoglund H., Knutson Wedel M., Karlsson B., 2007 Thermal vacancy hardening in Fe(100-x) Alx (28 < x < 40), Intermetallics, 15, 1127–1131.

    Article  CAS  Google Scholar 

  34. Kupka M., 2007 Can vacancies be the main reason of FeAl alloys hardening? J Alloys Comp, 437, 373–377.

    Article  CAS  Google Scholar 

  35. Amils X., Nogués J., Suriñach S., Baro M.D., Muñoz-Morris M.A., Morris D.G., 2000 Hardening and softening of FeAl during milling and annealing, Intermetallics, 8, 805–813.

    Article  CAS  Google Scholar 

  36. K. Holmberg and A. Matthews, Coatings Tribology Properties, Techniques and Applications in Surface Engineering, Elsevier Science Publ. Co., Amsterdam, 1994, p 442, ISBN-10: 0444888705 and ISBN-13: 978-0444888709

  37. P.J. Alison and H. Wilman, The different behaviour of hexagonal and cubic metals in their friction, wear and work hardening during abrasion, Brit. J. Appl. Phys., 1964, 15, p 281–289

    Article  ADS  Google Scholar 

  38. Mosbah A. Y., Wexler D., Calka A., 2005 Abrasive wear of WC-FeAl composites, Wear, 258, 1337–1341.

    Article  CAS  Google Scholar 

  39. Ahmadian M., Wexler D., Chandra T., Calka A., 2005 Abrasive wear of WC-FeAl-B and WC-Ni3AL-B composites, International Journal of Refractory Metals & Hard Materials, 23, 155–159.

    CAS  Google Scholar 

  40. J.M. Guilemany, M. Torrell, and J.R. Miguel, Study of the HVOF Ni-Based Coatings Corrosion Resistance Applied on Municipal Solid-Waste Incinerators, J. Therm. Spray Technol., 2008, 17(2) p 1059–9630

    Google Scholar 

  41. Guilemany J.M., Dosta S., Miguel J.R. 2006 The enhancement of the properties of WC-Co HVOF coatings through the use of nanostructured and microstructured feedstock powders, Surf & Coat Tech, 201, 1180–1190.

    Article  CAS  Google Scholar 

  42. I.M. Hutchings, Tribology: Friction and Wear of Engineering Materials, Metallurgy and Materials Science Series, ISBN 0-340-56184-x

  43. Wang Y., Chen W., Wang L., 2003 Micro-indentation and erosion properties of thermal sprayed NiAl intermetallic-based alloy coatings, Wear, 254, 350–355.

    Article  CAS  Google Scholar 

  44. Johnson B. J., Kennedy F. E., Baker I., 1996 Dry sliding wear of NiAl, Wear, 192, 241–247.

    Article  CAS  Google Scholar 

  45. Prchlik L., Sampath S., 2007 Effect of the microstructure of thermally sprayed coatings on friction and wear response under lubricated and dry sliding conditions, Wear, 262, 11–23.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

N. Cinca would like to thank to the Generalitat de Catalunya—project 2005SGR00310—and the Ministerio de Educación y Ciencia for the project MAT2006-06025 for the economical support and the researcher grant with reference number AP-2004-2453.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Cinca.

Additional information

This article is an invited paper selected from presentations at the 2008 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Thermal Spray Crossing Borders, Proceedings of the 2008 International Thermal Spray Conference, Maastricht, The Netherlands, June 2-4, 2008, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guilemany, J., Cinca, N., Fernández, J. et al. Erosion, Abrasive, and Friction Wear Behavior of Iron Aluminide Coatings Sprayed by HVOF. J Therm Spray Tech 17, 762–773 (2008). https://doi.org/10.1007/s11666-008-9252-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-008-9252-7

Keywords

Navigation