Skip to main content
Log in

The Effect of Undercooling on Solidification of YSZ Splats

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

We consider the rapid solidification of a molten YSZ particle, by solving the so-called hyperbolic equations for heat and mass transfer. The hyperbolic model predicts the interface undercooling (due to thermal and solutal effects) and velocity as a function of time, as well as the yttria redistribution within the solid phase. Results are then compared to corresponding ones that we obtained from a parabolic model, to assess the extent to which YSZ solidification is influenced by nonequilibrium effects. Results indicate that these effects are limited to the early part of the solidification process when undercooling is most significant. At this stage, the interface velocity is unsteady, and solute redistribution is most evident. As solidification decelerates, the nonequilibrium effects wane and solidification can then be properly modeled as an equilibrium process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

C :

concentration (wt.%)

C 0 :

initial concentration (wt.%)

C p :

specific heat capacity (J kg−1 K−1)

b :

splat thickness (m)

D :

mass diffusivity (m2 s−1)

h :

heat transfer coefficient (W m−2 K−1)

J C :

concentration flux (wt.% m s−1)

k f :

nonequilibrium partition coefficient

k e :

equilibrium partition coefficient

m :

slope of nonequilibrium liquidus (K wt.%−1)

m e :

slope of equilibrium liquidus (K wt.%−1)

Q :

latent heat of solidification (J kg−1)

T :

temperature (K)

T m :

equilibrium melting temperature (K)

T 0 :

initial temperature (K)

V D :

mass diffusion velocity (m s−1)

V i :

interface velocity (m s−1)

α:

thermal diffusivity (m2 s−1)

κ:

thermal conductivity (W m−1 K−1)

μ:

linear kinetics coefficient (m s−1 K−1)

ρ:

density (kg m−3)

τ:

relaxation time (s)

i:

interface

j:

solid or liquid phase

−:

liquid interface

 + :

solid interface

References

  1. Chae Y.K., Mostaghimi J., Yoshida T. (2000) Deformation and Solidification Process of a Super-cooled Droplet Impacting on the Substrate Under Plasma Spraying Conditions. Sci. Technol. Adv. Mat. 1:147-156

    Article  CAS  Google Scholar 

  2. Wang G.-X., Goswami R., Sampath S., Prasad V. (2004) Understanding the Heat Transfer and Solidification of Plasma-sprayed Yttria-partially Stabilized Zirconia Coatings. Mater. Manuf. Process. 19:259-272

    Article  Google Scholar 

  3. Streibl T., Vaidya A., Friis M., Srinivasan V., Sampath S. (2006) A critical assessment of particle temperature distributions during plasma spraying: Experimental results for YSZ. Plasma Chem. Plasma P. 26:53-72

    Article  Google Scholar 

  4. Clarke D.R., Levi C.G. (2003) Materials design for the next generation thermal barrier coatings. Annu. Rev. Mater. Res. 33:383-417

    Article  CAS  Google Scholar 

  5. H. Liu, M. Bussmann, and J. Mostaghimi, A Comparison of Hyperbolic and Parabolic Models of Phase Change of a Pure Metal, in press, Int. J. Heat Mass Tran., 2008. doi:10.1016/j.ijheatmasstransfer.2008.08.030

  6. Mullis A.M. (1997) Rapid solidification within the framework of a hyperbolic conduction model. Int. J. Heat Mass Tran. 40:4085-4094

    Article  MATH  CAS  Google Scholar 

  7. Sobolev S.L. (1997) Rapid solidification under local nonequilibrium conditions. Phys. Rev. 55:6845-6854

    ADS  CAS  Google Scholar 

  8. P.K. Galenko and D.A. Danilov, Linear Morphological Stability Analysis of the Solid-Liquid Interface in Rapid Solidification of a Binary System, J. Phys. Rev. E, 2004, 69, p 051608, 1-13

    Google Scholar 

  9. Galenko P.K., Danilov D.A. (1997) Local nonequilibrium effect on rapid dendritic growth in a binary alloy melt. Phys. Lett. A 235:271-280

    Article  ADS  CAS  Google Scholar 

  10. L. Bianchi, F. Blein, P. Lucchese, M. Vardelle, A. Vardelle, and P. Fuchais, Effect of Particle Velocity and Substrate Temperature on Alumina and Zirconia Splat Formation, Thermal Spray Industrial Applications, C. Berndt and S. Sampath, Ed., (Materials Park, OH), ASM International, 1994, p 569-574

  11. M. Fukomoto, Y. Huang, and M. Ohwatari, Flattening Mechanism in Thermal Sprayed Particle Impinging on Flat Substrate, Thermal Spray Meeting the Challenges of the 21st Century, C. Coddet, Ed., (Materials Park, OH), ASM International, 1998, p 401-406

  12. Pasandideh-Fard M., Pershin V., Chandra S., Mostaghimi J. (2002) Splat shapes in a thermal spray coating process: simulations and experiments. J. Therm. Spray Techn. 11:206-217

    Article  ADS  Google Scholar 

  13. Kurz W., Fisher D.J. (1998) Fundamentals of solidification, 4th Ed. Trans Tech Publications, Aedermannsdorf, pp. 63-89

    Google Scholar 

  14. Wang G.-X., Matthys E.F. (1996) Modeling of nonequilibrium surface melting and resolidification for pure metals and binary alloys. J. Heat Transf. 118:944-951

    Article  CAS  Google Scholar 

  15. C. Li, J. Li, and W. Wong, The Effect of Substrate Preheating and Surface Organic Covering on Splat Formation, Thermal Spray Meeting the Challenges of the 21st Century, C. Coddet, Ed., (Materials Park, OH), ASM International, 1998, p 473-480

  16. J. Pech, B. Hannoyer, A. Denoirjean, and P. Fauchais, Influence of Substrate Preheating Monitoring on Alumina Splat Formation in DC Plasma Process, Thermal Spray Surface Engineering via Applied Research, C. Berndt, Ed., (Materials Park, OH), ASM International, 2000, p 759-765

  17. Salimi Jazi H.R., Mostaghimi J., Coyle T., Chandra S., Lau C.Y., Rosenzweig L., Moran E. (2007) Effect of droplet characteristics and substrate surface topography on the final morphology of plasma sprayed zirconia single splat. J. Therm. Spray Techn 16:291-299

    Article  ADS  CAS  Google Scholar 

  18. Aziz M.J., Kaplan T. (1998) Continuous growth model for interface motion during alloy solidification. Acta Metall. 36:2335-2347

    Google Scholar 

  19. Aziz M.J., Boettinger W.J. (1994) On the transition from short-range diffusion-limited to collision-limited growth in alloy solidification. Acta Metall. Mater. 42:527-537

    Article  CAS  Google Scholar 

  20. Cattaneo C. (1948) Sulla conduzione del calore. Atti Sem. Mat. Fis. Univ. Modena 3:83-101

    MathSciNet  Google Scholar 

  21. Galenko P.K., Danilov D.A. (1999) Model for free dendritic alloy growth under interfacial and bulk phase nonequilibrium conditions. J. Cryst. Growth 197:992-1002

    Article  ADS  CAS  Google Scholar 

  22. Xiong H.-B., Zheng L.-L., Streibl T.A. (2006) Critical assessment of particle temperature distributions during plasma spraying: Numerical studies for YSZ. Plasma Chem. Plasma P 26:53-72

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Bussmann.

Additional information

This article is an invited paper selected from presentations at the 2008 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Thermal Spray Crossing Borders, Proceedings of the 2008 International Thermal Spray Conference, Maastricht, The Netherlands, June 2-4, 2008, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Bussmann, M. & Mostaghimi, J. The Effect of Undercooling on Solidification of YSZ Splats. J Therm Spray Tech 17, 646–654 (2008). https://doi.org/10.1007/s11666-008-9238-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-008-9238-5

Keywords

Navigation