Numerical Simulation of Droplet Impact on Patterned Surfaces

Abstract

This work presents numerical simulation results for molten nickel and zirconia (YZS) droplets impacting on different microscale-patterned surfaces of silicon. The numerical simulation clearly showed the effect of surface roughness and solidification on the shape of the final splat, as well as the pore creation beneath the sprayed material. Simulations were performed using computational fluid dynamic software, SimDrop. The code uses a three-dimensional finite-difference algorithm solving the full Navier-Stokes equation, including heat transfer and phase change. A volume of fluid (VOF) tracking algorithm is used to track the droplet-free surface. Thermal contact resistance at the droplet-substrate interface is also included in the model. Specific attention is paid to the simulation of droplet impact under plasma spraying conditions. Droplet sizes ranged from 15 to 60 microns with initial velocities of 70-250 m/s. Substrate surfaces were patterned with regular arrays of cubes 1-3 μm high, spaced either 1 μm or 5 μm from each other. Different splat morphologies produced by simulations are compared with those obtained from the experiment conducted under the same impact and surface conditions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    M. Raessi, J. Mostaghimi, and M. Bussmann, Droplet Impact During the Plasma Spray Coating Process – Effect of Surface Roughness on Splat Shapes, Proceedings of 17 th International Symposium on Plasma Chemistry, J Mostaghimi, T.W. Coyle, V.A. Pershin, and H.R. Salimi Jazi, Ed., August 7-12, 2005, (Toronto, Ontario, Canada), University of Toronto Press Inc., 2005, p 916-917

  2. 2.

    A.M. Ahmed, R.H. Rangel, Metal Droplet Deposition on Non-flat Surfaces: Effect of Substrate Morphology, Int. J. Heat Mass Transfer, Vol. 45, 2002 p 1077–1091

    Article  Google Scholar 

  3. 3.

    H. Fukanuma, Mathematical Modeling of Flattening Process on Rough Surfaces in Thermal Spray, Thermal Spray: Practical Solutions for Engineering Problems, C.C. Berndt, Ed., October 7-11, 1996 (Cincinnati, USA), ASM International, 1996, p 647-656

  4. 4.

    H. Liu, E.J. Lavernia, R.H. Rangel, Modeling of Molten Droplet Impingement on a Non-flat Surface, Acta Metall. Mater. 43 (5), 1995, p 2053–2072

    Article  CAS  Google Scholar 

  5. 5.

    M. Bussmann, J. Mostaghimi, S. Chandra, On a Three-Dimensional Volume Tracking Model of Droplet Impact, Phys. Fluids, 11(6), 1999, p 1406–1417

    Article  CAS  Google Scholar 

  6. 6.

    M. Pasandideh-Fard S. Chandra, J. Mostaghimi, A Three-dimensional Model of Droplet Impact and Solidification, Int. J. Heat Mass Transfer, 45, 2002, p 2229–2242

    Article  CAS  Google Scholar 

  7. 7.

    SimDrop is a software product of Simulent Inc., Toronto, Canada, http://www.simulent.com

  8. 8.

    M. Raessi, J. Mostaghimi, Three-dimensional Modeling of Density Variation due to Phase Change in Complex Free Surface Flows, Numer. Heat Transfer Part B – Fundamental, 47 (6), 2005, p 507–531

    Article  Google Scholar 

  9. 9.

    Y. Kawai and Y. Shiraishi, Ed., Handbook of Physico-Chemical Properties at High temperature, The Iron and Steel Institute of Japan, 1988

  10. 10.

    K. Shinoda, Y. Kojima, T. Yoshida, In Situ Measurement System for Deformation and Solidification Phenomena of Yttria-Stabilized Zirconia Droplets Impinging on Quartz Glass Substrate Under Plasma-Spraying Conditions, J. Thermal Spray Technol., 14(4), 2005, p 511–517

    Article  CAS  Google Scholar 

  11. 11.

    D. Simon, U. Pal, Mathematical Modeling of a Melt Pool Driven by an Electron Beam, Metall. Mater. Trans. B, 30B(3), 1999, p 517–526

    Google Scholar 

  12. 12.

    A. McDonald, “Visualization and Analysis of the Impact of Plasma-sprayed Particle,” Ph.D. Thesis, University of Toronto, 2007

  13. 13.

    A. McDonald, L. Rosenzweig, S. Chandra, and C. Moreau, Impact of Plasma-Sprayed Particles on Textured Silicon Wafers, ILASS America, Chicago, Illinois, May 2007

  14. 14.

    M. Xue, Y. Heichal, S. Chandra, J. Mostaghimi, Modeling the Impact of a Molten Metal Droplet on a Solid Surface Using Variable Interfacial Thermal Contact Resistance, J. Mater. Sci., 42, 2007, p 9–18

    Article  CAS  Google Scholar 

  15. 15.

    SimCoat is a software product of Simulent Inc., Toronto, Canada, http://www.simulent.com

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to H.B. Parizi.

Additional information

This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Parizi, H., Rosenzweig, L., Mostaghimi, J. et al. Numerical Simulation of Droplet Impact on Patterned Surfaces. J Therm Spray Tech 16, 713–721 (2007). https://doi.org/10.1007/s11666-007-9122-8

Download citation

Keywords

  • droplet impact
  • numerical simulation
  • patterned surface
  • solidification
  • thermal spray coating