Skip to main content
Log in

Tribological and Corrosion Behavior of Vacuum Plasma Sprayed Ti-Zr-Ni Quasicrystalline Coatings

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

This investigation deals with a study of the friction, wear, and corrosion behavior of vacuum plasma sprayed quasicrystalline (QC) Ti41.5Zr41.5Ni17 coatings. During pin on disc experiments, a change in the mode of wear has been found to occur with corresponding changes in normal load and sliding velocity. The low thermal conductivity of quasicrystals and its brittleness play a vital role in determining the friction and wear behavior of such materials. When these coatings are subjected to rubbing for a longer period of time, wear occurs by subsurface crack propagation, and subsequent delamination within the coated layer. By comparing the QC to its polycrystalline counterpart during potentiodynamic measurements according to ASTM G 31, higher currents were found over the whole range of potentials for QC when immersed in 1 M HCl solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D. Shechtman, I. Blech, D. Gratias, J.W. Cahn, Metallic Phase with Long-Range Orientational Order and No Translational Symmetry, Phys. Rev. Lett. (1984), 53, p. 1951–1953

    Article  CAS  Google Scholar 

  2. Y. Massiani, J.-M. Dubois, S.A. Yaazza, J.-P. Crousier, Electrochemical Corrosion Behavior of Quasi-Crystalline Coatings Prepared by Plasma Torch. Matériaux Tech. (1996), 84, p. 39–45

    CAS  Google Scholar 

  3. T. Klein, O.G. Symko, Formation of AlCuFe Quasicrystalline Thin Films by Solid State Diffusion. Appl. Phys. Lett. (1994), 64(4), 431

    Article  CAS  Google Scholar 

  4. J.M. Dubois, S.S. Kang, S. von Stebut, Quasicristalline Low-Friction Coatings, J. Mater. Sci. Lett. (1991), 10, p. 537–541

    Article  CAS  Google Scholar 

  5. C.J. Jenks, P.A. Theil, Surface Properties of Quasicrystals, MRS Bull. (1997), 22(11), 55

    CAS  Google Scholar 

  6. F. Cyrot-Lackmann, Quasicrystals as Potential Candidates for Thermoelectric Materials, Mater. Sci. Eng. A (2000), 294-296, p. 611–612

    Article  Google Scholar 

  7. J.-M. Dubois, New Prospects from Potential Applications of Quasicrystalline Materials, Mater. Sci. Eng. A (2000), 294-296, p. 4–9

    Article  Google Scholar 

  8. D.J. Sordelet, S.D. Widener, Y. Tang, M.F. Besser, Characterization of a Commercially Produced Al-Cu-Fe-Cr Quasicrystalline Coating, Mater. Sci. Eng. A (2000), 294-296, p. 834–837

    Article  Google Scholar 

  9. J.M. Dubois, S.S. Kang, A. Perrot, Towards Applications of Quasicrystals, Mater. Sci. Eng. A (1994), 179-180, 122

    Article  Google Scholar 

  10. D.J. Sordelet, M. F. Besser, I.E. Anderson, Particle Size Effects on Chemistry and Structure of Al-Cu-Fe Quasicrystalline Coatings, J. Therm. Spr. Techn. (1996), 5, p. 161–174

    Article  CAS  Google Scholar 

  11. J.P. Davis, E.H. Majzoub, J.M. Simmons, K.F. Kelton, Ternary Phase Diagram Studies in Ti-Zr-Ni Alloys, Mater. Sci. Eng. A (2000), 294-296, p. 104–107

    Article  Google Scholar 

  12. P.A. Thiel, A.I. Goldman, C.J. Jenks, Physical Properties of Quasicrystals, Springer Series in Solid State Science, vol. 126, Z.M. Stadnik, Ed., Springer-Verlag, Berlin, Germany, 1999, p. 327

    Google Scholar 

  13. K.F. Kelton, W.J. Kim, R.M. Stroud, A Stable Ti-based Quasicrystal, Appl. Phys. Lett. (1997), 70, p. 3230–3232

    Article  CAS  Google Scholar 

  14. Y. Massiani, S. Ait Yaazza, J.P. Crousier, J.M. Dubois, Electrochemical Behaviour of Quasicrystalline Alloys in Corrosive Solutions, J. Non-Cryst. Solids (1993), 159, 92

    Article  CAS  Google Scholar 

  15. P.C. Gibbons and K.F. Kelton, Physical Properties of Quasicrystals, Z.M. Stadnik, Ed. (Springer Series in Solid State Science, Springer-Verlag, Berlin, Germany, 1999) No. 126, p. 403

    Google Scholar 

  16. J.M. Dubois, S.S. Kang, Y. Massiani, Application of Quasicrystalline Alloys to Surface Coating of Soft Metals, J. Non-Cryst. Solids (1993), 153, 443

    Article  Google Scholar 

  17. C.J. Jenks, P.J. Pinhero, S.L. Chang, J.W. Andregg, M.F. Besser, D.J. Sordelet, and P.A. Theil, New Horizons in Quasicrystals, A.I. Goldman, D.J. Sordelet, P.A. Theil, and J.M. Dubois, Ed., World Scientific, 1997, p 157

  18. F.J. Hermanek, Processing Quasicrystalline Powders to Produce Variable and Unique Coating Properties, Thermal Spray: Surface Engineering via Applied Research, Vol 1, C.C. Berndt, Ed., May 8-11, 2000 (Montréal, Québec, CA), ASM International, 2000, p 567-573

  19. E. Lugscheider, C. Herbst-Dederichs, and A. Reimann, Thermally Sprayed Quasicrystal Composite Coatings for Bearings and Other Friction Threaded Applications, Thermal Spray: Surface Engineering via Applied Research, Vol 1, C.C. Berndt, Ed., May 8-11, 2000 (Montréal, Québec, CA), ASM International, 2000, p 843–849

  20. A. Reimann and E. Lugscheider, HVOF-Sprayed Quasi-crystal Composite Coatings for Bearing Applications, Thermal Spray 2001: New Surfaces for a New Millennium, C.C. Berndt, K.A. Khor, and E.F. Lugscheider, Ed., May 28-30, 2001 (Singapore), ASM International, 2001, p 33-39

  21. D.J. Sordelet, P.D. Krotz, R.L. Daniel, Jr., and M.F. Smith, Microstructure and Wear Behavior of Quasicrystalline Thermal Sprayed Coatings, Thermal Spraying: Current Status and Future Trends, Akira Ohmori, Ed., May 22-26, 1995 (Kobe, Japan), High Temperature Society of Japan, 1995, p 627-632

  22. J.E. Shield, A.I. Goldman, I.E. Anderson, T.W. Ellis, R.W. McCallum, and D.J. Sordellet, US Patent # 5,433,978, 1993

  23. D.J. Sordelet, M.F. Besser, J.L. Logsdon, Abrasive Wear Behavior of Al-Cu-Fe Quasicrystalline Composite Coatings, Mater. Sci. Eng. A (1998), 255, p 54–65

    Article  Google Scholar 

  24. E.H. Majzoub, “Ti Based Icosahedral Quasicrystals and Approximants: Phase Formation, Cluster Structure and Hydrogenation,” Ph.D. Thesis, Washington Uni., 2000

  25. P.P. Bandyopadhyay, P. Kern, S. Siegmann, Corrosion behavior of vacuum plasma sprayed Ti-Zr-Ni quasicrystal coatings. J. Mater. Sci. (2004), 39, p. 6101–6104

    Article  CAS  Google Scholar 

  26. J. Pezdirnik, J. Vizintin, B. Podgornik, Temperatures at the interface and inside an oscillatory sliding microcontact—theoretical part. Tribol. Int. (1999), 32, p. 481–489

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Siegmann.

Additional information

This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siegmann, S., Kern, P., Rohr, L. et al. Tribological and Corrosion Behavior of Vacuum Plasma Sprayed Ti-Zr-Ni Quasicrystalline Coatings. J Therm Spray Tech 16, 947–953 (2007). https://doi.org/10.1007/s11666-007-9117-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-007-9117-5

Keywords

Navigation