Optimization of a Rotating Twin Wire-Arc Spray Gun

This paper presents a CFD (Computational Fluid Dynamic) study and experimental results concerning a rotating twin wire-arc spray process for the production of coatings on engine cylinder bores. In this process, the wire atomization is performed using a gas injection coaxially with the cylinder axis. The thermal spray tool is equipped with a deviation head rotating around the cylinder axis and allowing deflecting the droplet spray perpendicularly to the cylinder surface. The initial deviation head was found to be not sufficiently efficient so that a new deviation head incorporating an inclined slot was designed and used. Both CFD results and experiments showed that this new deviation head is more efficient. Moreover, it allowed increasing the coating bond-strength up to the specifications imposed by PSA Peugeot-Citroen. The present article shows that the wire-arc spray technology may replace efficiently the Atmospheric Plasma Spray (APS) for the thermal spray of coatings on engine cylinder bores. Moreover, it shows how CFD may help in solving industrial problems. In particular, the FLUENT CFD code was used in order to perform improvements of the deviation head design.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    G. Barbezat The State of the Art of the Internal Plasma Spraying on Cylinder Bore in AlSi Cast Alloys. Int. J. Automot. Technol., 2001, 2(2), p 47-52

    Google Scholar 

  2. 2.

    G. Barbezat Advanced Thermal Spray Technology and Coating for Lightweight Engine Blocks for the Automotive Industry. Surf. Coat. Technol., 2005, 200, p 1990-1993

    Article  CAS  Google Scholar 

  3. 3.

    G. Barbezat, High Performance Coatings Produced by Internal Plasma Spraying on Engine Blocks of New Generation, Thermal Spray Solutions: Advances in Technology and Application, DVS, Düsseldorf, Germany, 2004. ISBN: 3-87155-792-7

  4. 4.

    G. Barbezat, Coating Deposition of Bearing Materials on Connecting Rod by Thermal Spraying, Thermal Spray Connects: Explore its Surfacing Potential! E. Lugscheider, Ed., DVS, Düsseldorf, Germany, 2005, 1574+ pages. ISBN: 3-87155-793-5

  5. 5.

    G. Barbezat, Importance of Surface Preparation Technology Prior to Coating Deposition on Cylinder Bores for High Performance Engines, Thermal Spray 2007: Global Coating Solutions, B.R. Marple, M.M. Hyland, Y.-C. Lau, C.-J. Li, R.S. Lima, and G. Montavon, Eds., ASM International, Materials Park, OH, USA, 2007

  6. 6.

    D. Nowotni, C. Wanke, T. Haug, and P. Izquierdo, “Inner Torch,” US Patent 6,667,460 B2, 2003

  7. 7.

    K. Bobzin, E. Lugscheider, F. Ernst, J. Zwick, T. Schlaefer, C. Verpoort, A. Schwenk, F. Schreiber, T. Wenz, D. Cook, K. Kowalsky, and J. Conti, Coating Bores of Light Metal Crankcases, Building on 100 Years of Success, B.R. Marple, M.M. Hyland, Y.C. Lau, R.S. Lima, and J. Voyer, Eds., ASM International, Materials Park, OH, USA, 2006

  8. 8.

    E. Lugscheider, R. Dicks, K. Kowalsky, D. Cook, K. Nassenstein, and C. Verpoort, A Materials System and Method of its Application for the Wear Protection of Aluminium Engine Cylinder Bore Surfaces, Thermal Spray Solutions: Advances in Technology and Application, DVS, Düsseldorf, Germany, 2004. ISBN: 3-87155-792-7

  9. 9.

    J.P. Dunkerley, T.A. Friedrich, and G. Irons, “Apparatus for Rotary Spraying a Metallic Coating,” US Patent 5,908,670, 1999

  10. 10.

    R. Benary, Arc Thermal Spray Gun Extension and Gas Jet Member Therefor,” US Patent 6,091,042, 2000

  11. 11.

    M. Boulais Monin, Etude Paramétrique et Caractérisation de Matériaux Obtenus par Projection Thermique: Application à l’Evolution des Moteurs d’Automobiles, Thesis, University of Franche-Comté, 1998 (in French)

  12. 12.

    D.B. Marshall, T. Noma, A.G. Evans A Simple Method for Determining Elastic-Modulus-to-Hardness Ratio Using Knoop Indentation Measurements. J. Am. Ceram. Soc., 1982, 65(10), p C175-C176

    Article  CAS  Google Scholar 

  13. 13.

    J. Stanisic, D. Kosikowski, P.S. Mohanty High-Speed Visualization and Plume Characterization of the Hybrid Spray Process. J. Therm. Spray Technol., 2006, 15(4), p 750-758

    Article  CAS  Google Scholar 

  14. 14.

    K.M. Djamarani, I.M. Clark Characterization of Particle Size Based on Fine and Coarse Fractions. Powder Technol., 1997, 93, p 101-108

    Article  CAS  Google Scholar 

  15. 15.

    C. Coddet, R. Bolot, J.M. Bordes, and C. Meekel, Dispositif de Projection de Particules Métalliques par Arc Electrique Entre Deux Fils, FR Patent 2 866 901, French Registration Number 04 02049, 2005 (in French)

Download references

Author information



Corresponding author

Correspondence to Rodolphe Bolot.

Additional information

This article was originally published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, 2007.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bolot, R., Liao, H., Mateus, C. et al. Optimization of a Rotating Twin Wire-Arc Spray Gun. J Therm Spray Tech 16, 783–790 (2007). https://doi.org/10.1007/s11666-007-9077-9

Download citation


  • computational fluid dynamics
  • internal thermal spray
  • twin wire-arc