Skip to main content
Log in

The tensile response and fracture behavior of an Al-Zn-Mg-Cu alloy: Influence of temperature

  • Testing and Evaluation
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A high-performance, high-strength, and novel AI-Zn-Mg-Cu alloy in the T7751 condition was deformed to failure in laboratory air environment at ambient and elevated temperatures. Temperature influenced the tensile response of the alloy for both the longitudinal and transverse orientations. Strength decreased with an increase in test temperature, with a concomitant improvement in ductility. Test results indicate the alloy response to be the same for both the longitudinal and transverse orientations. No major change in the macroscopic fracture mode was observed with the direction of testing. Tensile fracture, on a microscopic scale, revealed features reminiscent of both ductile and brittle mechanisms. The microscopic fracture behavior was a function of test temperature. The mechanisms and intrinsic micromechanisms governing the tensile fracture process are discussed in terms of mutually interactive influences of microstructural effects, matrix deformation characteristics, test temperature, and grain boundary failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.G. Kaufman, “Design of Aluminum Alloys for High Toughness and High Fatigue Strength,” 40th Meeting of Structures and Materials Panel, (Brussels, Belgium), NATO, April 1975

    Google Scholar 

  2. R.E. Sanders, Jr. and E.A. Starke, Jr., Metall. Trans. A, Vol 6, 1978,p1087

    Google Scholar 

  3. M.V. Hyatt and W.E. Quist, AFML Technical Report, TR-67-329, 1967

  4. E.A. Starke, Jr. and W.E. Quist, in Flight Vehicle Materials, Structures and Dynamics: Assessment and Future Directions, Vol 2, A.K. Noor and S.L. Venneri, Ed., American Society of Mechanical Engineers, 1992, p 118–160

  5. J.T. Staley, Technical Report, Contract M00019-71-C-0131, Naval Air Systems Command, May 1972

  6. J.T. Staley, “Microstructure and Toughness of High Strength Aluminum Alloys,” presented at ASTM Symposium on Properties as Related to Toughness, (Montreal, Canada), ASTM, June 1975

    Google Scholar 

  7. J.S. Santner, AFML Technical Report, TR-76-200, March 1977

  8. F. Ostermann, Metall. Trans., Vol 2,1971, p 2897–2902

    CAS  Google Scholar 

  9. E. DiRusso, M. Conserva, F. Gatto, and H. Markus, Metall. Trans.,Vol 4, 1973, p 1133–1144

    CAS  Google Scholar 

  10. W.H. Reimann and A.W. Brisbane, Eng. Fract. Mech., Vol 5, 1973, p 67–78

    Article  CAS  Google Scholar 

  11. D.S. Thompson, S.A. Levy, and D.K. Benson, Thermomechanical Aging of Aluminum Alloys, Third International Conference on Strength of Metals and Alloys, Cambridge University Press, England, 1973, p 119–123

    Google Scholar 

  12. J.E. Vruggink, Technical Report, 76073, Frankford-Arsenal, April 1977

  13. H. Sulinski and J. Waldman, Summary Report, Frankford-Arsenal, July 1976

  14. J.T. Staley and R.L. Rolf, International Symposium on Light Metals, The Minerals, Metals and Materials Society, August 1993

  15. J.T. Staley, Aluminum Alloys and Composites, Encyclopedia of Physical Science, Elsevier Applied Science, NY, Vol 1, 1992, p 591–598

    Google Scholar 

  16. E.A. Starke, Jr., Mater. Sei. Eng., Vol 29, 1977, p 99–112

    Article  CAS  Google Scholar 

  17. E. Hornbogen and E.A. Starke, Jr., Acta Metall. Mater., Vol 41 (No. 1), 1993, p 1–16

    Article  CAS  Google Scholar 

  18. L.F. Mondolfo, N.A. Gjoestein, and P.W. Levinson, Trans. AIME, Vol 206,1956, p 1311

    Google Scholar 

  19. J.T. Staley, Metall. Trans. A, Vol 5, 1974, p 929–940

    Article  CAS  Google Scholar 

  20. “Tension Testing of Metallic Materials,” E-8-93, ASTM, 1993

  21. S. Anand, “The Cyclic Fatigue and Fracture Behavior of Two High Strength Al-Zn-Mg-Cu Alloys,” Master of Science thesis, University of Akron, 1992

  22. R.E. Crooks and E.A. Starke, Jr., Metall. Trans. A, Vol 15, 1984, pl367

    Google Scholar 

  23. J.P. Hirth and J. Lothe, Theory of Dislocations, McGraw Hill, 1968, p 694

  24. N.F. Mott, Proc. R. Soc. A, Vol 200,1953, p 1

    Google Scholar 

  25. A.H. Stroh, Proc. R. Soc. A, Vol 223,1954, p 404

    Article  Google Scholar 

  26. J.M. Duva, M.A. Daubler, E.A. Starke, Jr., and G. Lutjering, Acta Metall.,Vol36,1988, p 585

    Article  CAS  Google Scholar 

  27. J. Gurland and J. Plateau, Trans. ASM, Vol 56,1963, p 442

    CAS  Google Scholar 

  28. R.H. Van Stone and J.A. Psioda, Metall. Trans. A, Vol 6,1975, p 672

    Google Scholar 

  29. A.S. Argon, J. Im, and A. Needleman, Metall. Trans. A, Vol 6, 1975,p825

    Google Scholar 

  30. A.S. Argon, J. Eng. Mater. Techno!., Vol 98, 1976, p 60

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivatsan, T.S., Anand, S., Veeraghavan, D. et al. The tensile response and fracture behavior of an Al-Zn-Mg-Cu alloy: Influence of temperature. J. of Materi Eng and Perform 6, 349–358 (1997). https://doi.org/10.1007/s11665-997-0100-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-997-0100-6

Keywords

Navigation