Skip to main content
Log in

Effect of Isothermal Ageing on Microstructure and Corrosion Behavior of Nickel and Molybdenum-Free High Nitrogen Austenitic Stainless Steel

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This study investigates the influence of isothermal ageing (550–850 °C) and time (30, 60, 180, 360, 720, and 1440 minutes) on microstructure and corrosion behavior of nickel and molybdenum-free high nitrogen austenitic stainless-steel (HNASS). In solution-annealed conditions, the HNASS has a single-phase austenite structure with annealed twins at the grain boundaries. HNASS treated to the aging range at lower temperatures and shorter duration resulted in various fine, discrete, and globular chromium-nitride (Cr2N) precipitation at grain boundaries. Whereas increased aging temperature and prolonged exposure duration led to the lamellar Cr2N pearlite-like microstructure formed within the austenite grain when treated at 650 °C, 750 °C, and 850 °C after 360 min, 180 min, and 60 min, respectively. The data obtained in potentiodynamic polarization (PDP) and double loop electrochemical potentiokinetic reactivation (DL-EPR) studies show a higher susceptibility to pitting and intergranular corrosion (IGC) with increased aging temperature and exposure duration. However, resistance to IGC and pitting corrosion of HNASS is correlated with the shape and size of Cr2N precipitation formed at the grain boundaries and extended into the matrix. The U-bend stress corrosion cracking (SCC) studies showed that the HNASS specimen aged at 750 °C for 1 hour showed no visible cracks. However, some random pit initiation and growth were observed over a period of time when exposed for 150 hours to boiling MgCl2 solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig.17
Fig. 18
Fig. 19

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. J.W. Simmons, D.G. Atteridge, and J.C. Rawers, Sensitization of High-Nitrogen Austenitic Stainless Steels by Dichromium Nitride Precipitation. United States. https://doi.org/10.5006/1.3294349 (1994).

  2. M. Kikuchi and Y. Mishima, High nitrogen steels, in Proceedings of the Conference on High Nitrogen Steels (HNS ’95), Kioto, Japan, (1996).

  3. R. Mohammed, G.M. Reddy, and K.S. Rao, Effect of Filler Wire Composition on Microstructure and Pitting Corrosion of Nickel Free High Nitrogen Stainless-steel GTA Welds, Trans. Indian Inst. Met., 2016, 69(10), p 1919–1927.

    Article  CAS  Google Scholar 

  4. T.B. Gibbons, Recent Advances in Steels for Coal Fired Power Plant: A Review, Trans. Indian Inst. Met., 2013, 66, p 631–640.

    Article  Google Scholar 

  5. L. Huabing, J. Zhou-hua, Z. Zu-rui, C. Yang, and Y. Yan, Intergranular Corrosion Behavior of High-Nitrogen Austenitic Stainless-Steel, International Journal of Minerals, Metallurgy and Materials, 2009, 5, p 654–660.

    Google Scholar 

  6. Y.S. Yoon, H.Y. Ha, T.H. Lee, and S. Kim, Effect of N and C on Stress Corrosion Cracking Susceptibility of Austenitic Fe18Cr10Mn-Based Stainless-Steels, Corros. Sci., 2014, 80, p 28–36.

    Article  CAS  Google Scholar 

  7. R. Mohammed, G. Madhusudhan Reddy, and K. Srinivasa Rao, Welding of Nickel free High-Nitrogen Stainless-Steel: Microstructure and Mechanical Properties, Def. Technol., 2017, 13(2), p 59–71.

    Article  Google Scholar 

  8. A. Di Schino and J.M. Kenny, Grain Refinement Strengthening of a Micro-Crystalline High-Nitrogen Austenitic Stainless-Steel, Mater. Lett., 2003, 57, p 1830–1834.

    Article  Google Scholar 

  9. N. Nobuo, H. Naoki, T. Toshihiro, and T. Setsuo, Grain Refinement of Nickel-Free High-Nitrogen Austenitic Stainless-Steel by Reversion of Eutectoid Structure, Scr. Mater., 2007, 57, p 153–156.

    Article  Google Scholar 

  10. S. Sheik, R. Mohammed, A. Tirumalla et al., Correlative Analysis of Morphology–Mechanical–Corrosion Behavior of Conventional Nickel-Based and Nitrogen-Alloyed Nickel-Free Austenitic Stainless-steels, J. Mater. Eng. Perform., 2023, 32, p 1196–1212.

    Article  CAS  Google Scholar 

  11. F. Shi, X. Zhang, T. Li, X. Guan, X. Li, and C. Liu, Effects of Nitrogen Content and Strain Rate on the Tensile Behavior of High-Nitrogen and Nickel-Free Austenitic Stainless Steel, Crystals, 2023, 13(1), p 129.

    Article  Google Scholar 

  12. H. Hänninen, J. Romu, R. Ilola, J. Tervo, and A. Laitinen, Effects of Processing and Manufacturing of High-Nitrogen-Containing Stainless-Steels on their Mechanical, Corrosion and Wear Properties, J. Mater. Process. Technol., 2001, 117, p 424–430.

    Article  Google Scholar 

  13. H. Baba, T. Kodama, and Y. Katada, Role of Nitrogen on the Corrosion Behavior of Austenitic Stainless-Steels, Corros. Sci., 2002, 44, p 2393–2407.

    Article  CAS  Google Scholar 

  14. I. Olefjord and L. Wegrelius, The Influence of Nitrogen on the Passivation of Stainless-Steels, Corros. Sci., 1996, 38, p 1203–1220.

    Article  CAS  Google Scholar 

  15. M.G. Pujar, U.K. Mudali, and S.S. Singh, Electrochemical Noise Studies of the Effect of Nitrogen on Pitting Corrosion Resistance of High-Nitrogen Austenitic Stainless-Steels, Corros. Sci., 2011, 53, p 4178–4186.

    Article  CAS  Google Scholar 

  16. F. Gao, Y. Qiao, J. Chen et al., Effect of Nitrogen Content on Corrosion Behavior of High-Nitrogen Austenitic Stainless Steel, NPJ Mater. Degrad., 2023, 7, p 75.

    Article  CAS  Google Scholar 

  17. S. Xu, F. Gao, J. Han, S. Xiong, X. Duan, F. Zha, B. Yu, L. Yang, Y. Qiao, Z. Zheng et al., Corrosion Behaviors of Fe-22Cr-16Mn-0.55N High-Nitrogen Austenitic Stainless Steel in 3.5% NaCl Solution, Coatings, 2022, 12, p 1769.

    Article  CAS  Google Scholar 

  18. M. Metikos-Hukovi, C.R. Babic, Z. Grubac, Z. Petrovic, and N. Lajci, High Corrosion Resistance of Austenitic Stainless-Steel Alloyed with Nitrogen in an Acid Solution, Corros. Sci, 2011, 53, p 2176–2183.

    Article  Google Scholar 

  19. T. Anita, S. Vani, R.P. George, and J. Philip, Effect of Nitrogen on the Intergranular Stress Corrosion Cracking Resistance of 316LN Stainless Steel, Corrosion., 2020, 76, p 693.

    Google Scholar 

  20. S. Kolli, V. Javaheri, J. Kömi, and D. Porter, On the Role of Grain Size and Carbon Content on the Sensitization and Desensitization Behavior of 301 Austenitic Stainless Steel, Metals, 2019, 9, p 1193.

    Article  CAS  Google Scholar 

  21. S. Rahimi, and T.J. Marrow, A New Method for Predicting Susceptibility of Austenitic Stainless Steels to Intergranular Stress Corrosion Cracking, Mater. Des., 2020, 187, p 108368.

    Article  CAS  Google Scholar 

  22. S. Kolli et al., The Importance of Steel Chemistry and Thermal History on the Sensitization Behavior in Austenitic Stainless Steels: Experimental and Modeling Assessment, Mater. Today Commun., 2020, 24, p 101088.

    Article  CAS  Google Scholar 

  23. H. Li, Z. Jiang, H. Feng, Q. Ma, and D. Zhan, Aging Precipitation Behavior of 18Cr-16Mn-2Mo-llN High Nitrogen Austenitic Stainless-steel and Its Influences on Mechanical Properties, J. Iron. Steel. Inst., 2012, 19(8), p 43–51.

    Article  Google Scholar 

  24. B. Kartik, R. Veerababu, M. Sundararaman, and D.V.V. Satyanarayana, Effect of High Temperature Aging on Microstructure and Mechanical properties of a Nickel-free High Nitrogen Austenitic Stainless-steel, Mater. Sci. Eng. A, 2015, 642, p 288–296.

    Article  CAS  Google Scholar 

  25. T.-H. Lee, C.-S. Oh, C.G. Lee, S.-J. Kim, and S. Takaki, Precipitation of r-Phase in High-Nitrogen Austenitic 18Cr–18Mn–2Mo–0.9 N Stainless-Steel During Isothermal Aging, Scr. Mater., 2004, 50, p 1325–1328.

    Article  CAS  Google Scholar 

  26. W. Xinqiang, F. Yao, J. Huang, E. Han, W. Ke, K. Yang, and Z. Jiang, Investigation on Pitting Corrosion of Nickel-Free and Manganese Alloyed High-Nitrogen Stainless-Steels, J. Mater. Eng. Perform., 2009, 18, p 287–298.

    Article  Google Scholar 

  27. P. Rosemann, C. Müller, and T. Halle, Sensitization Behaviour of the Nitrogen Alloyed Austenitic Stainless Steel X8CrMnMoN18-19-2, in IOP Conference Series: Materials Science and Engineering. Vol. 882. No. 1. IOP Publishing, (2020).

  28. K.K. Krishna, J. Anburaj, R. Dhanasekar et al., Kinetics of Cr2N Precipitation and Its Effect on Pitting Corrosion of Nickel-Free High-Nitrogen Austenitic Stainless-Steel, J. Mater. Eng. Perform., 2020, 29, p 6044–6052.

    Article  Google Scholar 

  29. F. Shi, Y. Qi, and C. Liu, Effects of Mo on the Precipitation Behaviors in High-Nitrogen Austenitic Stainless-Steels, J. Mater. Sci. Technol., 2011, 27(12), p 1125–1130.

    Article  CAS  Google Scholar 

  30. Y. Qiao, X. Wang, L. Yang, X. Wang, J. Chen, Z. Wang, H. Zhou, J. Zou, and F. Wang, Effect of Aging Treatment on Microstructure and Corrosion Behavior of a Fe-18Cr-15Mn-0.66N Stainless-Steel, J. Mater. Sci. Technol., 2022, 107, p 197–206.

    Article  CAS  Google Scholar 

  31. H. Li, Z. Jiang, H. Feng, Q. Ma, and D. Zhan, Aging Precipitation Behavior of 18Cr-16Mn-2Mo-1.1N High Nitrogen Austenitic Stainless-steel and Its Influences on Mechanical Properties, J. Iron Steel Res. Int., 2012, 19(8), p 43–51.

    Article  Google Scholar 

  32. L. Hu, H. Peng, I. Baker, L. Li, W. Zhang, and T. Ngai, Characterization of High-Strength High-Nitrogen Austenitic Stainless-Steel Synthesized from Nitrided Powders by Spark Plasma Sintering, Mater. Charact., 2019, 152, p 76–84.

    Article  CAS  Google Scholar 

  33. H. Li, Z. Jiang, Z. Zhang, Y. Cao, and Y. Yang, Intergranular Corrosion Behavior of High Nitrogen Austenitic Stainless Steel, Int. J. Miner. Metall. Mater., 2009, 16, p 654–660.

    CAS  Google Scholar 

  34. T.H. Lee, S.J. Kim, and Y.C. Jung, Crystallographic Details of Precipitates in Fe-22Cr-21Ni-6Mo-(N) Superaustenitic Stainless-Steels Aged at 900 °C, Metall. Mater. Trans. A, 2000, 31, p 1713–1723.

    Article  Google Scholar 

  35. N. Kauss, A. Heyn, O. Michael, M. Schymura, and P. Rosemann, Application Limits and Sensitisation Behaviour of the Manganese- and Nitrogen-Alloyed Austenitic Stainless Steel P2000 (X13CrMnMoN18-14-3), Mater. Corros., 2021, 72, p 1656–1667.

    Article  CAS  Google Scholar 

  36. A. Devasenapathi and M. Asawa, Effect of High Mn on SCC Behaviour of an Austenitic Stainless Steel in 42% Boiling MgCl2 Solution, J. Mater. Sci. Lett., 1997, 16, p 1363–1365.

    Article  CAS  Google Scholar 

  37. A. Osama and R. Nishimura, On the SCC Behaviour of Austenitic Stainless Steels in Boiling Saturated Magnesium Chloride Solution, Corros. Control Serv. Soc., 2007, 1, p 257–266.

    Google Scholar 

  38. M. Raffi, K. Srinivasa Rao, and G. Madhusudhan Reddy, Effect of Microstructure on Stress Corrosion Cracking Behaviour of High Nitrogen Stainless Steel Gas Tungsten Arc Welds, in IOP Conference Series: Materials Science and Engineering. Vol. 330. No. 1. IOP Publishing (2018)

  39. Y. Young-Sub et al., Comparative Study of Stress Corrosion Cracking Susceptibility of Fe18Cr10Mn-and Fe18Cr10Mn1Ni-Based High Nitrogen Stainless Steels, Corros. Sci., 2014, 88, p 337–348.

    Article  Google Scholar 

  40. Q. Yanxin et al., Effect of Aging Treatment on Microstructure and Corrosion Behavior of a Fe-18Cr-15Mn-0.66 N Stainless-Steel, J. Mater. Sci. Technol., 2022, 107, p 197–206.

    Article  Google Scholar 

  41. H. Ha and H. Kwon, Effects of Cr2N on the Pitting Corrosion of High Nitrogen Stainless-Steels, Electrochim. Acta, 2007, 52(5), p 2175–2180.

    Article  CAS  Google Scholar 

  42. J. Wu, Y. Qiao, Y. Chen et al., Correlation between Corrosion Films and Corrosion-Related Defects Formed on 316 Stainless-steel at High Temperatures in Pressurized Water, J. Mater. Eng. Perform., 2021, 30, p 3577–3585.

    Article  CAS  Google Scholar 

  43. ASTM International, Technical Standard ASTM G108‐15, ASTM International, West Conshohocken, PA 2015.

  44. N. Parvathavarthini and U.K. Mudali, Electrochemical Techniques for Estimating the Degree of Sensitization in Austenitic Stainless steels, Corros. Rev., 2014, 32, p 5–6. https://doi.org/10.1515/corrrev-2014-0029

    Article  CAS  Google Scholar 

  45. ASTM G36-94. Standard practice for evaluating stress-corrosion-cracking resistance of metals and alloys in a boiling magnesium chloride solution. West Conshohocken, PA: ASTM International; 2018. 2018 www.astm.org.

  46. ASTM G30-97. Standard practice for making and using U-bend stress-corrosion test samples. West Conshohocken, PA: ASTM International; 1997. Available from: www.astm.org.

  47. R. Mohammed, M.G. Reddy, and K.R. Srinivasa, Microstructure and Pitting Corrosion of Shielded Metal Arc Welded High Nitrogen Stainless-Steel, Def. Technol., 2015, 11(3), p 237–243.

    Article  Google Scholar 

  48. N. Parvathavarthini and R.K. Dayal, Influence of Chemical Composition, Prior Deformation and Prolonged Thermal Aging on the Aging Characteristics of Austenitic Stainless-Steels, J. Nucl. Phys. Mater. Sci. Radiat. Appl., 2002, 305, p 209–219.

    CAS  Google Scholar 

  49. Z.X. Zhang, Y.P. Liang, H.P. Qu, J.Z. Xiang, Z.X. Zhang, Y.P. Liang, H.P. Qu, and J.Z. Xiang, Research on Microstructure and Properties of Cr-Mn-N Austenitic Stainless-Steel for Non-magnetic Drilling Collar Application, Hot Work. Technol., 2013, 18(42), p 147–152.

    Google Scholar 

  50. M. Sun, Y. Yang, M. Luo, L. Jiang, Y. Jiang, and J. Li, Investigation of Susceptibility to Intergranular Corrosion of Tin-Added Austenitic Stainless-Steel, Acta Metall. Sin-Engl, 2015, 28, p 1183–1189.

    Article  CAS  Google Scholar 

  51. T. Sourmail, C.H. Too, and H.K.D.H. Bhadeshia, Sensitisation and Evolution of Chromium-Depleted Zones in Fe-Cr-Ni-C SYSTEMS, ISIJ Int., 2003, 43, p 1814–1820.

    Article  CAS  Google Scholar 

  52. W. Zhou, W. Ma, Y. Li, and Y. Sun, Effect of Sensitizing Treatment on the Microstructure and Susceptibility to Intergranular Corrosion of High-Nitrogen Austenitic Stainless-steel, Metall. Microstruct. Anal., 2021, 10(1), p 25–35.

    Article  CAS  Google Scholar 

  53. P. Chung and S. Szklarska-Smialowska, The Effect of Heat Treatment on the Degree of sensitization of Type 304 Stainless-steel, Corrosion, 1981, 37(1), p 39–50.

    Article  CAS  Google Scholar 

  54. P.O. Atanda, A. Fatudimu, and O. Oluwole. Sensitisation study of normalized 316L stainless-steel. (2010).

  55. S. Kolli, T. Ohligschläger, J. Kömi, and D. Porter, Aging and Self-healing in Austenitic Stainless-Steel: Quantitative Prediction Considering Carbide Nucleation and Growth, ISIJ Int., 2019, 5, p 86.

    Google Scholar 

  56. P.K. Gajjar, B.C. Khatri, A.M. Siddhpura et al., Aging and Deaging (Healing) in Austenitic Stainless-steel: A Critical Review, Trans. Indian Inst. Met., 2022, 75, p 1411–1427.

    Article  CAS  Google Scholar 

  57. S.M. Bruemmer, L.A. Chariot and B.W. Arey, Aging Development in Austenitic Stainless-steel: Correlation between STEM-EDS and EPR Measurements, Corrosion, 1988, 44(6), p 328–333.

    Article  CAS  Google Scholar 

  58. K.R. Trethewey, Some Observations on the Current Status in the Understanding of Stress-Corrosion Cracking of Stainless-Steels, Mater. Des., 2008, 29(2), p 501–507.

    Article  CAS  Google Scholar 

  59. S.R. Kumar, K. Gudimetla, P. Venkatachalam et al., Stress Corrosion Cracking of Al7075 Alloy Processed by Equal Channel Angular Pressing, Int. J. Eng. Sci. Technol., 2010, 2, p 53–61.

    CAS  Google Scholar 

  60. R.H. Jones, Stress Corrosion Cracking, ASM International, Ohio, 1992.

    Google Scholar 

  61. V.S. Raja and T. Shoji, Stress Corrosion Cracking Theory and Practice, Woodhead Publishing Limited, Cambridge, 2011.

    Book  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank the Director of NIT Andhra Pradesh for providing funds under the Research Seed Grant (RSG) for this study. The authors thank Dr. G Madhusudhan Reddy, Former Director, DMRL, for his continuous support and encouragement in the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffi Mohammed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheik, S., Mohammed, R. Effect of Isothermal Ageing on Microstructure and Corrosion Behavior of Nickel and Molybdenum-Free High Nitrogen Austenitic Stainless Steel. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09787-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09787-8

Keywords

Navigation