Skip to main content
Log in

Influence of Solution Alkalinity and Alternating Current Density on Anti-corrosion Property of CoCrFeMnNi High-Entropy Alloy in Simulated Concrete Pore Solution

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This paper comprehensively evaluated the effect of solution pH and alternating current (AC) on the corrosion behavior of CoCrFeMnNi high-entropy alloy (HEA) in simulated concrete pore solution. The results indicate that increased solution pH markedly enhances the corrosion rate of the HEA and the number and size of pits as well as more flaws are produced inside its thinned passive film, which suggests that the anti-corrosion property of the HEA is reduced. Under strong solution alkalinity, the rough passive film on the HEA is uneven and unstable, which significantly weakens the protection of the film. As iAC augments, more oxygen vacancies are generated to absorb anions in test solution and Ep shifts negatively, which decreases the stability of passive film and promotes the pitting sensitivity. Moreover, the synergistic influence of pH value and AC density reflected by a remarkable increase of ip facilitates the dissolution of passive film and declines the corrosion resistance of the HEA, which may be due to the reason that increased AC interference produces more OH- ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Z.D. Shen, Z.L. Ma, Z.Q. Xu, and X.W. Cheng, Grain Refinement and Abnormal Peritectic Solidification in WxNbTiZr High-Entropy Alloys, Mater. Des., 2022, 224, p 111381.

    Article  CAS  Google Scholar 

  2. E. Sakar, O. Guler, B. Alım, Y. Say, and B. Dikici, A Comprehensive Study on Structural Properties, Photon and Particle Attenuation Competence of CoNiFeCr–Ti/Al High Entropy Alloys (HEAs), J. Alloy. Compd., 2023, 931, p 167561.

    Article  CAS  Google Scholar 

  3. A. Fall, M. Grasinger, and K. Dayal, An Optimized Species-Conserving Monte Carlo Method with Potential Applicability to High Entropy Alloys, Comp. Mater. Sci., 2023, 217, p 111886.

    Article  CAS  Google Scholar 

  4. P. Kumari, R.K. Mishra, A.K. Gupta, S. Mohapatra, and R.R. Shahi, A Systematic Investigations on Effect of Annealing Temperature on Magnetic Properties of a Promising Soft Magnetic Co35Cr5Fe10Ni30Ti20 HEA, J. Alloy. Compd., 2023, 931, p 167451.

    Article  CAS  Google Scholar 

  5. K. Kadirvel, H.L. Fraser, and Y.Z. Wang, Microstructural Design Via Spinodal-Mediated Phase Transformation Pathways in High-Entropy Alloys (HEAs) Using Phase-Field Modelling, Acta Mater., 2023, 223, p 118438.

    Article  Google Scholar 

  6. M. Orhan and M. Hendy, Ponga, Electronic Effects on The Radiation Damage in High-Entropy Alloys, Acta Mater., 2022, 17, p 118511.

    Google Scholar 

  7. H.Y. Chen, Y. Liu, Y.G. Wan, Z.G. Li, D. Wang, and K. Kosiba, Temperature-Dependent Dynamic Compressive Properties and Failure Mechanisms of The Additively Manufactured CoCrFeMnNi High Entropy Alloy, Mater. Design, 2022, 224, p 111324.

    Article  CAS  Google Scholar 

  8. S. Gonzalez, A.K. Sfikas, S. Kamnis, C.G. Garay-Reyes, A. Hurtado-Macias, and R. Martínez-Sanchez, Wear Resistant CoCrFeMnNi0.8V High Entropy Alloy with Multi Length-Scale Hierarchical Microstructure, Mater. Lett., 2023, 331, p 133504.

    Article  CAS  Google Scholar 

  9. R. Gholizadeh, S. Yoshida, Y. Bai, S. Kurokawa, A. Shibata, and N. Tsuji, Global Understanding of Deformation Behavior in CoCrFeMnNi High Entropy Alloy Under High-Strain Torsion Deformation at A Wide Range of Elevated Temperatures, Acta Mater., 2023, 243, p 118514.

    Article  CAS  Google Scholar 

  10. Z.J. Li, X.K. Ding, L. Chen, J.C. He, J.F. Chen, J. Chen, N.B. HuA, P.Q. Dai, and Q.H. Tang, Effect of Content and Annealing Temperatures on Microstructure, Tensile Properties of FeCoCrNiMn High Entropy Alloys, J. Alloy. Compd., 2023, 935, p 168090.

    Article  CAS  Google Scholar 

  11. Y.C. Zhou, B. Yang, and G.D. Zhang, Microstructure and Mechanical Properties of CoCrFeMnNi/WC Plasma Deposited Coating After the Spark Plasma Sintering Treatment, Surf. Coat. Tech., 2022, 449, p 128959.

    Article  CAS  Google Scholar 

  12. T. Yang, B. Cai, Y. Shi, M. Wang, and G. Zhang, Preparation of Nanostructured CoCrFeMnNi High Entropy Alloy By Hot Pressing Sintering Gas Atomized Powders, Micron, 2021, 147, p 103082.

    Article  CAS  PubMed  Google Scholar 

  13. J.B. Zhang, G.C. Xiao, M.D. Yi, Z.Q. Chen, J.J. Zhang, H. Chen, X.Z. Shang , and C.H. Xu, High-Temperature Mechanical Properties of ZrB2/SiC/Si3N4 Ceramic Tool Materials with Dual Composite Architectures, Ceram. Int., 2022, 48, p 1038–1046.

    Article  CAS  Google Scholar 

  14. M. Rajput, P. Mondal, P. Yadav, and K. Chatterjee, Light-Based 3D Bioprinting of Bone Tissue Scaffolds with Tunable Mechanical Properties and Architecture from Photocurable Silk Fibroin, Int. J. Biol. Macromol., 2022, 202, p 644–656.

    Article  CAS  PubMed  Google Scholar 

  15. K. Zhan, F.J. Li, W.Z. Wang, Y. Xu, R. Zhao, Z. Yang, Z. Wang, and B. Zhao, Preparation and Mechanism of Cu/GO/Cu Laminated Composite Foils with Improved Thermal Conductivity and Mechanical Property by Architectural Design, J. Alloy. Compd., 2022, 904, p 164085.

    Article  CAS  Google Scholar 

  16. H. Luo, Z.M. Li, A.M. Mingers, and D. Raabe, Corrosion Behavior of an Equiatomic CoCrFeMnNi High-Entropy Alloy Compared with 304 Stainless Steel in Sulfuric Acid Solution, Corros. Sci., 2018, 134, p 131–139.

    Article  CAS  Google Scholar 

  17. C.L. Zhang, M. Zhu, Y.F. Yuan, S.Y. Guo, and G.T. Zhu, Comparison of Corrosion Behavior of CoCrNi Medium-Entropy Alloy with CoCrFeMnNi High-Entropy Alloy in SO2-Polluted Marine Environment, J. Mater. Eng. Perform., 2024, 33, p 541–555.

    Article  CAS  Google Scholar 

  18. C.W. Lu, Y.S. Lu, Z.H. Lai, H.W. Yen, and Y.L. Lee, Comparative Corrosion Behavior of Fe50Mn30Co10Cr10 Dual-Phase High-Entropy Alloy and CoCrFeMnNi High-Entropy Alloy in 3.5 wt.% NaCl Solution, J. Alloy. Compd., 2020, 842, p 155824.

    Article  CAS  Google Scholar 

  19. Z.L. Xu, H. Zhang, X.J. Du, Y.Z. He, H. Luo, G.S. Song, L. Mao, T.W. Zhou, and L.L. Wang, Corrosion Resistance Enhancement of CoCrFeMnNi High-Entropy Alloy Fabricated by Additive Manufacturing, Corros. Sci., 2020, 177, p 108954.

    Article  CAS  Google Scholar 

  20. H. Luo, S.W. Zou, Y.H. Chen, Z.M. Li, C.W. Du, and X.G. Li, Influence of Carbon on the Corrosion Behaviour of Interstitial Equiatomic CoCrFeMnNi High-Entropy Alloys in a Chlorinated Concrete Solution, Corros. Sci., 2020, 163, p 108287.

    Article  CAS  Google Scholar 

  21. Z.P. Chen, L. Gao, and D.A. Koleva, Evaluating The Stray Current Corrosion of Steel Rebar in Different Layouts, Measurement, 2022, 196, p 111217.

    Article  Google Scholar 

  22. K.K. Tang, Stray Alternating Current (AC) Induced Corrosion of Steel Fibre Reinforced Concrete, Corros. Sci., 2019, 152, p 153–171.

    Article  CAS  Google Scholar 

  23. W.Q. Xu, Y. Li, H.Z. Li, K. Wang, C.P. Zhang, Y.B. Jiang, and S. Qiang, Corrosion Mechanism and Damage Characteristic of Steel Fiber Concrete Under the Effect of Stray Current and Salt Solution, Constr. Build. Mater., 2022, 314, p 125618.

    Article  CAS  Google Scholar 

  24. J. Ming, X.C. Zhou, H.N. Zuo, L.H. Jiang, Y.Q. Zou, and J.J. Shi, Effects of Stray Current and Silicate Ions on Electrochemical Behavior of a High-Strength Prestressing Steel in Simulated Concrete Pore Solutions, Corros. Sci., 2022, 197, p 110083.

    Article  CAS  Google Scholar 

  25. A. Brenna, S. Beretta, F. Bolzoni, M. Pedeferri, and M. Ormellese, Effects of AC-Interference on Chloride-Induced Corrosion of Reinforced Concrete, Constr. Build. Mater., 2017, 137, p 76–84.

    Article  CAS  Google Scholar 

  26. F.F. Eliyan and A. Alfantazi, Corrosion of the Heat-Affected Zones (HAZs) of API-X100 Pipeline Steel in Dilute Bicarbonate Solutions at 90 °C—an Electrochemical Evaluation, Corros. Sci., 2013, 1(74), p 297–307.

    Article  Google Scholar 

  27. Z. Li, C.Y. Li, H.C. Qian, L. Jun, H. Liang, and C.W. Du, Corrosion Behavior of X80 Steel with Coupled Coating Defects under Alternating Current Interference in Alkaline Environment, Materials, 2017, 10, p 720.

    Article  PubMed  PubMed Central  Google Scholar 

  28. L.J. Chen and R.K.L. Su, Experimental and Numerical Investigations on Macrocell Corrosion of Partially Carbonated Reinforced Concrete with Supplementary Cementitious Materials, Cem. Concr. Compos., 2023, 135, p 104827.

    Article  CAS  Google Scholar 

  29. N.P. Tran, T.N. Nguyen, and T.D. Ngo, The Role of Organic Polymer Modifiers in Cementitious Systems Towards Durable and Resilient Infrastructures: a Systematic Review, Constr. Build. Mater., 2022, 360, p 129562.

    Article  CAS  Google Scholar 

  30. M. Zhu, B.Z. Zhao, Y.F. Yuan, S.Y. Guo, and G.Y. Wei, Study on Corrosion Behavior and Mechanism of CoCrFeMnNi HEA Interfered by AC Current in Simulated Alkaline Soil Environment, J. Electroanal. Chem., 2021, 882, p 115026.

    Article  CAS  Google Scholar 

  31. H.X. Qiao and B.R. Zhu, Early Electrochemical Performance of Untreated Steel Bars in Simulated Concrete Pore Solutions, J. Mater. Sci. Eng., 2019, 37, p 107–112.

    CAS  Google Scholar 

  32. P. Ghods, O.B. Isgor, G.A. McRae, and G.P. Gu, Electrochemical Investigation of Chloride-Induced Depassivation of Black Steel Rebar under Simulated Service Conditions, Corros. Sci., 2010, 52, p 1649–1659.

    Article  CAS  Google Scholar 

  33. M. Zhu, C.W. Du, X.G. Li, Z.Y. Liu, S.R. Wang, J.K. Li, and D.W. Zhang, Effect of AC Current Density on Stress Corrosion Cracking Behavior of X80 Pipeline Steel in High pH Carbonate/Bicarbonate Solution, Electrochim. Acta, 2014, 117, p 351–359.

    Article  CAS  Google Scholar 

  34. M. Zhu, C.W. Du, X.G. Li, Z.Y. Liu, H. Li, and D.W. Zhang, Effect of AC On Stress Corrosion Cracking Behavior and Mechanism of X80 Pipeline Steel in Carbonate/Nicarbonate Solution, Corros. Sci., 2014, 87, p 224–232.

    Article  CAS  Google Scholar 

  35. D.C. Kong, C.F. Dong, and X.Q. Ni, Mechanical Properties and Corrosion Behavior of Selective Laser Melted 316L Stainless Steel after Different Heat Treatment Processes, J. Mater. Sci. Technol., 2019, 35, p 1499–1507.

    Article  CAS  Google Scholar 

  36. Y. Yang, and Y.F. Cheng, Passivity Degradation and Photocorrosion of X52 Carbon Steel under Visible Light Illumination in Concentrated Carbonate/Bicarbonate Solutions, Corros. Sci., 2020, 172, p 108727.

    Article  CAS  Google Scholar 

  37. G. Meng, Y. Li, Y. Shao, T. Zhang, Y. Wang, and F. Wang, Effect of Cl- on the Properties of the Passive Films Formed on 316L Stainless Steel in Acidic Solution, J. Mater. Sci. Technol., 2014, 30, p 253–258.

    Article  CAS  Google Scholar 

  38. J.W. Ma, B.C. Zhang, Y. Fu, X.J. Hu, X.F. Cao, Z.M. Pan, Y. Wei, H. Luo, and X.G. Li, Effect of Cold Deformation on Corrosion Behavior of Selective Laser Melted 316L Stainless Steel Bipolar Plates in a Simulated Environment for Proton Exchange Membrane Fuel Cells, Corros. Sci., 2022, 201, p 110257.

    Article  CAS  Google Scholar 

  39. Z. Wang, Z. Feng, and L. Zhang, Effect of High Temperature on The Corrosion Behavior and Passive Film Composition of 316L Stainless Steel in High H2S-Containing Environments, Corros. Sci., 2020, 174, p 108844.

    Article  CAS  Google Scholar 

  40. M. Liu, X.Q. Cheng, and X.G. Li, Corrosion Behavior of Low-Cr Steel Rebars in Alkaline Solutions with Different pH in the Presence of Chlorides, J. Electroanal. Chem., 2017, 803, p 40–50.

    Article  CAS  Google Scholar 

  41. L.W. Wang, X.H. Wang, Z.Y. Cui, Z.Y. Liu, C.W. Du, and X.G. Li, Effect of Alternating Voltage on Corrosion of X80 and X100 Steels in a Chloride Containing Solution—Investigated by AC Voltammetry Technique, Corros. Sci., 2014, 86, p 213–222.

    Article  CAS  Google Scholar 

  42. W. Fredriksson, D. Petrini, K. Edström, F. Björefors, and L. Nyholm, Corrosion Resistances and Passivation of Powder Metallurgical and Conventionally Cast 316L and 2205 Stainless Steels, Corros. Sci., 2013, 67, p 268–280.

    Article  CAS  Google Scholar 

  43. M. Zhu, B.Z. Zhao, Y.F. Yuan, S.M. Yin, and S.Y. Guo, Effect of Annealing Time on Microstructure and Corrosion Behavior of CoCrFeMnNi High-Entropy Alloy in Alkaline Soil Simulation Solution, Corros. Commun., 2021, 3, p 45–61.

    Article  Google Scholar 

  44. Q.Y. Wang, X.S. Zhang, H.B. Zheng, T.Y. Liu, L.J. Dong, J. Zhang, Y.C. Xi, D.Z. Zeng, Y.H. Lin, and H. Luo, Intergranular Corrosion Mechanism of Sub-Grain in Laser Additive Manufactured Hastelloy C22 Induced by Heat Treatment, Appl. Surf. Sci., 2023, 608, p 155140.

    Article  CAS  Google Scholar 

  45. M. Zhu, Q. Zhang, B.Z. Zhao, Y.F. Yuan, and S.Y. Guo, Effect of Potential on the Characteristics of Passive Film on A CoCrFeMnNi High-Entropy Alloy in Carbonate/Bicarbonate Solution, J. Mater. Eng. Perform., 2021, 30, p 918–930.

    Article  CAS  Google Scholar 

  46. Z.Y. Ai, J.Y. Jiang, W. Sun, D. Song, H. Ma, J.C. Zhang, and D.Q. Wang, Passive Behaviour of Alloy Corrosion-Resistant Steel Cr10Mo1 in Simulating Concrete Pore Solutions with Different pH, Appl. Surf. Sci., 2016, 389, p 1126–1136.

    Article  CAS  Google Scholar 

  47. J.P. Wang, Z. Zhang, H.L. Dai, H. Fujiwara, X. Chen, and K. Ameyama, Enhanced Corrosion Resistance of CoCrFeMnNi High Entropy Alloy Using Heterogeneous Structure Design, Corros. Sci., 2022, 209, p 110761.

    Article  CAS  Google Scholar 

  48. L.T. Wang, D. Mercier, S. Zanna, A. Seyeux, M. Laurent-Brocq, L. Perrière, I. Guillot, and P. Marcus, Study of The Surface Oxides and Corrosion Behaviour of an Equiatomic CoCrFeMnNi High Entropy Alloy By XPS and ToF-SIMS, Corros. Sci., 2020, 167, p 108507.

    Article  CAS  Google Scholar 

  49. J.Z. Yao, D.D. Macdonald, and C.F. Dong, Passive Film on 2205 Duplex Stainless Steel Studied by Photo-Electrochemistry and ARXPS Methods, Corros. Sci., 2019, 146, p 221–232.

    Article  CAS  Google Scholar 

  50. A.M. Oje, A.A. Ogwu, S.U.R. Rahman, A.I. Oje, and N. Tsendzughul, Effect of Temperature Variation on the Corrosion Behaviour and Semiconducting Properties of The Passive Film Formed on Chromium Oxide Coatings Exposed to Saline Solution, Corros. Sci., 2019, 154, p 28–35.

    Article  CAS  Google Scholar 

  51. H. Wang, P. Liu, X.H. Chen, Q.Q. Lu, and H.L. Zhou, Mechanical Properties and Corrosion Resistance Characterization of a Novel Co36Fe36Cr18Ni10 High-Entropy Alloy for Bioimplants Compared to 316L Alloy, J. Alloys Compd., 2022, 906, 163947.

    Article  CAS  Google Scholar 

  52. D.D. Macdonald, The History of the Point Defect Model for the Passive State: a Brief Review of Film Growth Aspects, Electrochim. Acta, 2011, 56, p 1761–1772.

    Article  CAS  Google Scholar 

  53. G. Bai, S. Lu, D. Li, and Y. Li, Effects of Boron on Microstructure and Metastable Pitting Corrosion Behavior of Super 304H Austenitic Stainless Steel, J. Electrochem. Soc., 2015, 162, p 473–481.

    Article  Google Scholar 

  54. V.A. Katkar, G. Gunasekaran, and A.G. Rao, Effect of the Reinforced Boron Carbide Particulate Content of AA6061 Alloy on Formation of the Passive Film in Seawater, Corros. Sci., 2021, 53, p 2700–2712.

    Article  Google Scholar 

  55. M.Z.C.W. Du, X.G. Li, Z.Y. Liu, and D.W. Zhang, Effect of AC on Stress Corrosion Cracking Behavior and Mechanism of X80 Pipeline Steel in Carbonate/Bicarbonate Solution, Corros. Sci., 2014, 87, p 224–232.

    Article  Google Scholar 

  56. Q.W. Wang, J.X. Zhang, Y. Gao, N.W. Dai, Y.X. Chen, D.Y. Lin, and X.J. Xia, Galvanic Effect and Alternating Current Crrosion of Steel in Acidic Red Soil, Metals, 2022, 12, p 296–299.

    Article  CAS  Google Scholar 

  57. W. Wu, Y. Pan, Z.Y. Liu, C.W. Du, and X.G. Li, Electrochemical and Stress Corrosion Mechanism of Submarine Pipeline in Simulated Seawater in Presence of Different Alternating Current Densities, Materials, 2018, 11, p 1074.

    Article  PubMed  PubMed Central  Google Scholar 

  58. L.Y.Y.X. Du, D.Z. Tang, L. Chen, L. Zhang, and L.J. Qiao, Research on AC Corrosion Behavior and Corrosion Product Film Evolution of X70 Steel under the Combined Action of AC Interference and CP, Corros. Sci., 2022, 197, p 110085.

    Article  Google Scholar 

  59. M. Liu, X.Q. Cheng, X.G. Li, and T.J. Lu, Corrosion Behavior of Low-Cr Steel Rebars in Alkaline Solutions with Different pH in the Presence of Chlorides, J. Electroanal. Chem., 2017, 803, p 40–50.

    Article  CAS  Google Scholar 

  60. Q. Liu, Q.X. Ma, G.Q. Chen, X. Cao, S. Zhang, J.L. Pan, G. Zhang, and Q.Y. Shi, Enhanced Corrosion Resistance of AZ91 Magnesium Alloy through Refinement and Homogenization of Surface Microstructure By Friction Stir Processing, Corros. Sci., 2018, 138, p 284–296.

    Article  CAS  Google Scholar 

  61. M. Zhu, Q. Zhang, Y.F. Yuan, S.Y. Guo, and J. Pan, Effects of Cl- And AC on The Corrosion Behavior of 2507 Super Duplex Stainless Steel in A Simulated Concrete Pore Solution, J. Mater. Eng. Perform., 2020, 29, p 8431–8440.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51871026) and the Fundamental Research Funds of Zhejiang Sci-Tech University of China (No.22242293-Y).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, Q.H., Zeng, Y.Q., Zhu, M. et al. Influence of Solution Alkalinity and Alternating Current Density on Anti-corrosion Property of CoCrFeMnNi High-Entropy Alloy in Simulated Concrete Pore Solution. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09579-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09579-0

Keywords

Navigation