Skip to main content
Log in

Preparation and High-Temperature Stability of (Zr1/5La1/5Sm1/5Dy1/5Gd1/5)O2−x High-Entropy Ceramic Materials

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

ZrOCl2·8H2O, La2O3, Sm2O3, Dy2O3, and Gd2O3 powders were used as raw materials to prepare equimolar-ratio (Zr1/5La1/5Sm1/5Dy1/5Gd1/5)O2−x high-entropy ceramic materials via chemical co-precipitation method. Microstructure, phase structure, high-temperature stability, and evolution of phase composition of the powders under high-temperature conditions were studied. Results show that (Zr1/5La1/5Sm1/5Dy1/5Gd1/5)O2−x high-entropy ceramic materials synthesized via chemical co-precipitation method exhibited single cubic fluorite phase structure. After heat treatment at 1400 °C for 5 h, solid solution of monoclinic rare-earth oxide separated from cubic fluorite phase. Ceramic powders exhibited stable monoclinic phase and rare-earth oxide-doped ZrO2 dual phase after long-term heat treatment up to 100 h. Results of the fitting of x-ray spectroscopy data show that oxygen vacancy content in high-entropy ceramic powders decreased from 85 to 57% after 100 h of heat treatment. Results of thermogravimetry and differential scanning calorimetry measurements show that hydroxides in high-entropy ceramic powders underwent dehydration reactions at 273 and 454 °C, and the separation of rare-earth oxides from cubic solid solutions occurred when the temperature increased above 1320 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K.M. Doleker and A.C. Karaoglanli, Comparison of oxidation behavior of YSZ and Gd2Zr2O7 thermal barrier coatings (TBCs), Surf. Coat. Technol., 2016, 318, p 198–207.

    Article  Google Scholar 

  2. Z.Y. Shen, G.X. Liu, Y.Q. Luo, S.J. Chen, L.M. He, and R.D. Mu, Thermal property and failure behaviour of Pr doped Gd2Zr2O7 thermal barrier coatings, Corrosion Sci., 2024, 226, 111641.

    Article  CAS  Google Scholar 

  3. H. Tian, L.L. Wei, and L.M. He, Phase composition and stability, sintering and thermal conductivity of Gd2O3 and Yb2O3 co-doped YSZ, Coatings, 2023, 13, p 53.

    Article  CAS  Google Scholar 

  4. S.M. Lakiza, M.I. Grechanyuk, O.K. Ruban, V.P. Redko, M.S. Glabay, O.B. Myloserdov, O.V. Dudnik, and S.V. Prokhorenko, Thermal barrier coatings: current status, search, and analysis, Powder Metall. Met. Ceram., 2018, 57, p 82–113.

    Article  CAS  Google Scholar 

  5. O.N. Senkov and S.L. Semiatin, Microstructure and properties of a refractory high-entropy alloy after cold working, J. Alloy. Compd., 2015, 649, p 1110–1123.

    Article  CAS  Google Scholar 

  6. S.C. Jiang, T. Hu, J. Gild, N.X. Zhou, J.Y. Nie, M.D. Qin, T. Harrington, K. Vecchio, and J. Luo, A new class of high-entropy perovskite oxides, Scr. Mater., 2018, 142, p 116–120.

    Article  CAS  Google Scholar 

  7. T.S. Srivatsan, High Entropy Alloys: Innovations, Advances, and Applications, CRC Press, Florida, 2023, p 1–20

    Google Scholar 

  8. Z. Zhao, H. Xiang, F.Z. Dai, Z. Peng, and Y. Zhou, (TiZrHf)P2O7: an equimolar multicomponent or high entropy ceramic with good thermal stability and low thermal conductivity, J. Mater. Sci. Technol., 2019, 35(10), p 2227–2231.

    Article  CAS  Google Scholar 

  9. L.C. Sun, Y.X. Luo, X.M. Ren, Z.H. Gao, T.F. Du, Z. Wu, and J.Y. Wang, A multicomponent γ-type (Gd1/6Tb1/6Dy1/6Tm1/6Yb1/6Lu1/6)2Si2O7 disilicate with outstanding thermal stability, Mater. Res. Lett., 2020, 8, p 424–430.

    Article  CAS  Google Scholar 

  10. X.T. Chen, H.H. Jiang, C.R. Xu, T.W. Fan, and B.Y. Tang, Ab initio study of mechanical properties of hexagonal high-entropy ceramic (Mo0.25Nb0.25Ta0.25V0.25)(Al0.5Si0.5)2 with dual mixing of cation and anion sublattice, J. Phys. Chem. Solids., 2022, 165, p 110701.

    Article  CAS  Google Scholar 

  11. Y. Xin, W. Dan, Y. Fan, and X. Li, Low temperature synthesis of high-entropy (Y0.2Yb0.2Sm0.2Eu0.2Er0.2)2O3 nanofibers by a novel electrospinning method, J. Mater. Sci. Technol., 2022, 103, p 215–220.

    Article  Google Scholar 

  12. B. He, F. Li, H. Zhou, Y.B. Dai, and B.D. Sun, Thermal failure of thermal barrier coating with thermal sprayed bond coating on titanium alloy, J. Coat. Technol. Res., 2008, 5, p 99–106.

    Article  CAS  Google Scholar 

  13. L. Zhou, J.X. Liu, T.Z. Tu, W. Yue, and G.J. Zhang, Fast grain growth phenomenon in high-entropy ceramics: a case study in rare-earth hexaaluminates, J. Adv. Ceram., 2023, 12(1), p 111–121.

    Article  CAS  Google Scholar 

  14. K. Ren, Q.K. Wang, G. Shao, X.F. Zhao, and Y.G. Wang, Multicomponent high-entropy zirconates with comprehensive properties for advanced thermal barrier coating, Scr. Mater., 2020, 178, p 382–386.

    Article  CAS  Google Scholar 

  15. S.V. Ushakov, S. Hayun, W.P. Gong, and A. Navrotsky, Thermal analysis of high-entropy rare earth oxides, Materials, 2020, 13, p 3141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Y. Yao, F. Yang, and X.F. Zhao, Multicomponent high-entropy Zr–Y–Yb–Ta–Nb–O oxides for next-generation thermal barrier coating applications, J. Am. Ceram. Soc., 2022, 105, p 35–43.

    Article  CAS  Google Scholar 

  17. Y.N. Sun, H.M. Xiang, F.Z. Dai, X.H. Wang, Y. Xing, X.J. Zhao, and Y.C. Zhou, Preparation and properties of CMAS resistant bixbyite structured high-entropy oxides RE2O3 (RE = Sm, Eu, Er, Lu, Y, and Yb): promising environmental barrier coating materials for Al2O3f/Al2O3 composites, J. Adv. Ceram., 2021, 10, p 596–613.

    Article  CAS  Google Scholar 

  18. Y. Liu, M. Xie, R. Li, X. Pei, Y. Zhang, R. Mu, J. Bao, and X. Song, Failure analysis of EB-PVD LaZrCeO/YSZ TBCs exposed to molten NaCl in thermal cycling, Ceram. Int., 2022, 48(21), p 32444–32454.

    Article  CAS  Google Scholar 

  19. P.H. Mayrhofer, A. Kirnbauer, P. Ertelthaler, and C.M. Koller, High-entropy ceramic thin films; a case study on transition metal diborides, Scr. Mater., 2018, 149, p 93–97.

    Article  CAS  Google Scholar 

  20. D. Chen, Q.S. Wang, Y.B. Liu, and X.J. Ning, Microstructure, thermal characteristics, and thermal cycling behavior of the ternary rare earth oxides (La2O3, Gd2O3, and Yb2O3) co-doped YSZ coatings, Surf. Coat. Technol., 2020, 403, 126387.

    Article  CAS  Google Scholar 

  21. M.P. Schmitt, A.K. Rai, R. Bhattacharya, D.M. Zhu, and D.E. Wolfe, Multilayer thermal barrier coating (TBC) architectures utilizing rare earth doped YSZ and rare earth pyrochlores, Surf. Coat. Technol., 2014, 251, p 56–63.

    Article  CAS  Google Scholar 

  22. C.W. Paschoal, R.L. Moreira, C. Fantini, M.A. Pimenta, K.P. Surendran, and M.T. Sebastian, Raman scattering study of RETiTaO6 dielectric ceramics, J. Eur. Ceram. Soc., 2003, 23, p 2661–2666.

    Article  CAS  Google Scholar 

  23. L. Spiridigliozzi, C. Ferone, R. Ciof, G. Accardo, D. Frattini, and G. Dell’Agli, Entropy-stabilized oxides owning fluorite structure obtained by hydrothermal treatment, Materials, 2020, 13, p 558–562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. H. Chen, Z.F. Zhao, H.M. Xiang, F.Z. Dai, J. Zhang, S.G. Wang, J.C. Liu, and Y.C. Zhou, Effect of reaction routes on the porosity and permeability of porous high entropy (Y0.2Yb0.2Sm0.2Nd0.2Eu0.2)B6 for transpiration cooling, J. Mater. Sci. Technol., 2020, 38, p 80–85.

    Article  CAS  Google Scholar 

  25. R.L. Jones, R.F. Reidy, and D. Mess, Scandia, yttria-stabilized zirconia for thermal barrier coatings, Surf. Coat. Technol., 1996, 82(1–2), p 70–76.

    Article  CAS  Google Scholar 

  26. Q.Y. Shi, W.H. Yuan, X.Y. Chao, and Z.F. Zhu, Phase stability, thermal conductivity and crystal growth behavior of RE2O3 (RE = La, Yb, Ce, Gd) co-doped Y2O3 Stabilized ZrO2 powder, J. Sol-Gel Sci. Technol., 2017, 84, p 341–348.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwei Dai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, J., Yang, W., Mu, R. et al. Preparation and High-Temperature Stability of (Zr1/5La1/5Sm1/5Dy1/5Gd1/5)O2−x High-Entropy Ceramic Materials. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09573-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09573-6

Keywords

Navigation