Skip to main content
Log in

Effects of Processing Parameters and Tool Geometric Parameters on Residual Stress of Machined 304 Stainless Steel

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The machined surface residual stress plays a critical role in stress corrosion cracking resistance and fatigue performance of austenitic stainless steels. Controlling the residual stress by changing machining parameters is an effective way to improve the service performance of components. This paper explores the effects of processing parameters and tool geometric parameters on residual stress by establishing an analytical model for residual stress evaluation on machined surface. Considering the thermo-mechanical coupling effects of machining, a multi-physics framework of orthogonal cutting process is built up. From the coupling mechanical and thermal loads, the variations of stress, strain and temperature are modelled by an elastoplastic procedure. Based on the mechanism of residual stress and the loading-unloading model, the prediction of residual stress is achieved. Experimental tests are conducted for model validation. By simulating the cutting processes under different conditions and analyzing the main factors that affecting the stress/strain and temperature fields, the effects of cutting parameters and tool geometric parameters on residual stress are revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. M. James, D. Hughes, Z. Chen, H. Lombard, D. Hattingh, D. Asquith, J. Yates, and P. Webster, Residual Stresses and Fatigue Performance, Eng. Fail. Anal., 2007, 14, p 384–395.

    Article  CAS  Google Scholar 

  2. O. Takakuwa and H. Soyama, Effect of Residual Stress on the Corrosion Behavior of Austenitic Stainless Steel, Adv. Chem. Eng. Sci., 2014, 5, p 62.

    Article  Google Scholar 

  3. W. Zhang, Y. Li, H. Dong, C. Yang, X. Jiang, D. Lou, H. Xue, K. Fang, and X. Wang, Correlation Between Machining-Induced Surface Alterations and Stress Corrosion Cracking Susceptibility of au Stenitic Stainless Steels, J. Mater. Res. Technol., 2023, 26, p 5076–5094.

    Article  CAS  Google Scholar 

  4. W. Zhang, X. Wang, S. Wang, H. Wu, C. Yang, Y. Hu, K. Fang, and H. Jiang, Combined effects of machining-induced residual stress and external load on SCC initiation and early propagation of 316 stainless steel in high temperature high pressure water, Corros. Sci., 2021, 190, p 109644.

    Article  CAS  Google Scholar 

  5. S. Qu, C. Wei, Y. Yang, P. Yao, D. Chu, Y. Gong, D. Zhao, and X. Zhang, Grinding mechanism and surface quality evaluation strategy of single crystal 4H-SiC, Tribol. Int., 2024, 194, p 109515.

    Article  CAS  Google Scholar 

  6. Y. Changfeng, W. Daoxia, T. Liang, R. Junxue, S. Kaining, and Y. Zhenchao, Effects of Cutting Parameters on Surface Residual Stress and its Mechanism in High-Speed Milling of TB6, Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf., 2013, 227, p 483–493.

    Article  Google Scholar 

  7. K. Huang and W. Yang, Analytical Analysis of the Mechanism of Effects of Machining Parameter and Tool Parameter on Residual Stress Based on Multivariable Decoupling Method, Int. J. Mech. Sci., 2017, 128, p 659–679.

    Article  Google Scholar 

  8. Z. Ping, W. Penghao, Y. Xiujie, Z. Yanchun, and Y. Xiao, Influence of Tool Geometric Parameters on the Residual Stress of 7A04 Aluminum Alloy in LSEM, Int. J. Adv. Manuf. Technol., 2022, 120, p 1707–1728.

    Article  Google Scholar 

  9. W. Zhang, H. Dong, Y. Li, C. Yang, and H. Xue, Combining Turning with Slide Burnishing to Improve Surface Integrity and Stress Corrosion Resistance, J. Manuf. Process., 2023, 107, p 16–33.

    Article  Google Scholar 

  10. N.S. Rossini, M. Dassisti, K.Y. Benyounis, and A.G. Olabi, Methods of Measuring Residual Stresses in Components, Mater. Des., 2012, 35, p 572–588.

    Article  Google Scholar 

  11. J.C. Outeiro, D. Umbrello, and R. M’Saoubi, Experimental and Numerical Modelling of the Residual Stresses Induced in Orthogonal Cutting of AISI 316L Steel, Int. J. Mach. Tools Manuf, 2006, 46, p 1786–1794.

    Article  Google Scholar 

  12. Z.-C. Lin, Y.-Y. Lin, and C. Liu, Effect of Thermal Load and Mechanical Load on the Residual Stress of a Machined Workpiece, Int. J. Mech. Sci., 1991, 33, p 263–278.

    Article  Google Scholar 

  13. M.N. Nasr, E.-G. Ng, and M. Elbestawi, Modelling the Effects of Tool-Edge radIus on Residual Stresses When Orthogonal Cutting AISI 316L, Int. J. Mach. Tools Manuf, 2007, 47, p 401–411.

    Article  Google Scholar 

  14. F. Valiorgue, J. Rech, H. Hamdi, P. Gilles, and J. Bergheau, A New Approach for the Modelling of Residual Stresses Induced by Turning of 316L, J. Mater. Process. Technol., 2007, 191, p 270–273.

    Article  CAS  Google Scholar 

  15. F. Valiorgue, J. Rech, H. Hamdi, P. Gilles, and J.M. Bergheau, 3D Modeling of Residual Stresses Induced in Finish Turning of an AISI304L Stainless Steel, Int. J. Mach. Tools Manuf, 2012, 53, p 77–90.

    Article  Google Scholar 

  16. A.M. Group, J. Merwin, and K. Johnson, An Analysis of Plastic Deformation in Rolling Contact, Proc. Inst. Mech. Eng., 1963, 177, p 676–690.

    Article  Google Scholar 

  17. M. Wan, X.Y. Ye, D.Y. Wen, and W.H. Zhang, Modeling of Machining-Induced Residual Stresses, J. Mater. Sci., 2019, 54, p 1–35.

    Article  CAS  Google Scholar 

  18. K.L. Johnson, Contact Mechanics, Cambridge University Press, Cambridge, 1987.

    Google Scholar 

  19. P.L.B. Oxley, A Mechanics of Machining Approach to Assessing Machinability, Proceedings of the Twenty-second International Machine Tool Design and Research Conference. B.J. Davies Ed., Macmillan Education, London, 1982, p 279–287. https://doi.org/10.1007/978-1-349-06281-2_35

    Chapter  Google Scholar 

  20. D.J. Waldorf, R.E. DeVor, and S.G. Kapoor, A Slip-Line Field for Ploughing During Orthogonal Cutting, J. Manuf. Sci. Eng. Trans. Asme, 1998, 120, p 693–690.

    Article  Google Scholar 

  21. S. Liang and J.-C. Su, Residual Stress Modeling in Orthogonal Machining, CIRP Ann., 2007, 56, p 65–68.

    Article  Google Scholar 

  22. J. Zheng, Y. Shang, Y. Guo, H. Deng, and L. Jia, Analytical Model of Residual Stress in Ultrasonic Rolling of 7075 Aluminum Alloy, J. Manuf. Process., 2022, 80, p 132–140.

    Article  Google Scholar 

  23. K. Jacobus, R. DeVor, and S. Kapoor, Machining-Induced Residual Stress: Experimentation and Modeling, Manuf. Sci. Eng., 2000, 122, p 20–31.

    Article  Google Scholar 

  24. D. Ulutan, B.E. Alaca, and I. Lazoglu, Analytical Modelling of Residual Stresses in Machining, J. Mater. Process. Technol., 2007, 183, p 77–87.

    Article  CAS  Google Scholar 

  25. X. Ji, X. Zhang and S.Y. Liang, Predictive Modeling of Residual Stress in Minimum Quantity Lubrication Machining, Int. J. Adv. Manuf. Technol., 2014, 70, p 2159–21684.

    Article  Google Scholar 

  26. C. Shan, M. Zhang, S. Zhang, and J. Dang, Prediction of Machining-Induced Residual Stress in Orthogonal Cutting of Ti6Al4V, Int. J. Adv. Manuf. Technol., 2020, 107, p 2375–2385.

    Article  Google Scholar 

  27. Y. Huang and S. Liang, Modelling of the Cutting Temperature Distribution Under the Tool Flank Wear Effect, Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., 2003, 217, p 1195–1208.

    Article  Google Scholar 

  28. R. Komanduri and Z.B. Hou, Thermal Modeling of the Metal Cutting Process: Part I—Temperature Rise Distribution Due to Shear Plane Heat Source, Int. J. Mech. Sci., 2000, 42, p 1715–1752.

    Article  Google Scholar 

  29. P.L.B. Oxley and M.C. Shaw, Mechanics of Machining: An Analytical Approach to Assessing Machinability, J. Appl. Mech., 1990, 57, p 253.

    Article  Google Scholar 

  30. G.R. Johnson and W.H. Cook, Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures, Eng. Fract. Mech., 1985, 21, p 31–48.

    Article  Google Scholar 

  31. B. Li, Research on Analytical Prediction of Cutting Forces in Stainless Steel Machining, Huazhong University of Science and Technology, Huazhong, 2012.

    Google Scholar 

  32. D.J. Waldorf, A Simplified Model for Ploughing Forces in Turning, J. Manuf. Processes, 2006, 8, p 76–82.

    Article  Google Scholar 

  33. W. Zhang, X. Wang, Y. Hu, and S. Wang, Predictive Modelling of Microstructure Changes, Micro-Hardness and Residual Stress in Machining of 304 Austenitic Stainless Steel, Int. J. Mach. Tools Manuf, 2018, 130–131, p 36–48.

    Article  Google Scholar 

  34. S. Agrawal and S.S. Joshi, Analytical Modelling of Residual Stresses in Orthogonal Machining of AISI4340 Steel, J. Manuf. Process., 2013, 15, p 167–179.

    Article  Google Scholar 

  35. A.I. Lurie, Theory of Elasticity, Springer Science & Business Media, UK, 2010.

    Google Scholar 

  36. M.T.A. Saif, C.Y. Hui, and A.T. Zehnder, Interface Shear Stresses Induced by non-Uniform Heating of a Film on a Substrate, Thin Solid Films, 1993, 224, p 159–167.

    Article  Google Scholar 

  37. J.-C. Su, Residual Stress Modeling in Machining Processes, Georgia Institute of Technology, Georgi, 2006.

    Google Scholar 

  38. D. McDowell, An Approximate Algorithm for Elastic-Plastic Two-Dimensional Rolling/Sliding Contact, Wear, 1997, 211, p 237–246.

    Article  CAS  Google Scholar 

  39. R. M’Saoubi, J.C. Outeiro, B. Changeux, J.L. Lebrun, and A.M. Dias, Residual Stress Analysis in Orthogonal Machining of Standard and Resulfurized AISI 316L Steels, J. Mater. Process. Technol., 1999, 96, p 225–233.

    Article  Google Scholar 

  40. Y. Jiang and H. Sehitoglu, An Analytical Approach to Elastic-Plastic Stress Analysis of Rolling Contact, J. Tribol., 1994, 116(3), p 577–587. https://doi.org/10.1115/1.2928885

    Article  Google Scholar 

  41. G. Olson and M. Cohen, A Mechanism for the Strain-Induced Nucleation of Martensitic Transformations, J. Less Common Metals, 1972, 28, p 107–118.

    Article  CAS  Google Scholar 

  42. R. Zaera, J.A. Rodríguez-Martínez, A. Casado, J. Fernandez-Saez, A. Rusinek, and R. Pesci, A Constitutive Model for Analyzing Martensite Formation in Austenitic Steels Deforming at High Strain Rates, Int. J. Plast., 2012, 29, p 77–101.

    Article  CAS  Google Scholar 

  43. F. Zhou, Research on Machined Surface Characteristics of 304 Stainless Steel, Huazhong University Science Technology, Huazhong, 2014, p 15–24

    Google Scholar 

  44. W. Zhang, H. Wu, S. Wang, Y. Hu, K. Fang, and X. Wang, Investigation of Stress Corrosion Cracking Initiation in Machined 304 Austenitic Stainless Steel in Magnesium Chloride Environment, J. Mater. Eng. Perform., 2020, 29, p 191–204.

    Article  CAS  Google Scholar 

  45. A. Thakur and S. Gangopadhyay, State-of-the-Art in Surface Integrity in Machining of Nickel-Based Super Alloys, Int. J. Mach. Tools Manuf, 2016, 100, p 25–54.

    Article  Google Scholar 

  46. C. Ezilarasan, V. Senthil Kumar, and A. Velayudham, Effect of Machining Parameters on Surface Integrity in Machining Nimonic C-263 Super Alloy Using Whisker-Reinforced Ceramic Insert, J. Mater. Eng. Perform., 2013, 22, p 1619–1628.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 52205148), the China Postdoctoral Science Foundation (Grant No. 2023M731392), the Natural Science Foundation of Hubei Province of China (Grant No. 2023AFB928) and the Scientific Research Project of Hubei Provincial Department of Education (Grant No. Q20239404). The authors thank the Advanced Manufacturing and Technology Experiment Center of School of Mechanical Science and Engineering of HUST for residual stress measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenqian Zhang or Xuelin Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special topical issue of the Journal of Materials Engineering and Performance on Residual Stress Analysis: Measurement, Effects, and Control. The issue was organized by Rajan Bhambroo, Tenneco, Inc.; Lesley Frame, University of Connecticut; Andrew Payzant, Oak Ridge National Laboratory; and James Pineault, Proto Manufacturing on behalf of the ASM Residual Stress Technical Committee.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Dong, H., Li, Y. et al. Effects of Processing Parameters and Tool Geometric Parameters on Residual Stress of Machined 304 Stainless Steel. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09569-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09569-2

Keywords

Navigation