Skip to main content
Log in

Effect of Stretch Bending on the Microstructure and Mechanical Properties of AZ31 Magnesium Alloy

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The stretch-bending straightening is an effective way to improve the accuracy of sheet assembly. The effect of stretch-bending on the microstructure, deformation behavior and mechanical properties of the extruded AZ31 alloy sheet is investigated by experiments and finite element analysis. The grain size decreases with increasing deformation, and the upper surface shows a greater of grain size reduction rate than the lower surface due to the tensile and compressive asymmetry of the sheet in the thickness direction. This stress–strain asymmetry has been demonstrated by finite element analysis. In addition, the pole density centers of the (0001), (10 \(\overline{1 }\) 0), (10 \(\overline{1 }\) 1) and (10 \(\overline{1 }\) 2) textures move reciprocally with the loading and unloading of the lower roll along the extrusion direction. The (0001) texture is significantly enhanced affected by the stress loading direction and the “sticking position” of the (0001) grains. The increase of the basal texture intensity and work hardening causes the yield strength and hardness of the sheet to increase by 49 and 26%, respectively, while the plasticity of the sheet decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

Data available on request from the authors.

References

  1. Q.H. Chen, R.N. Chen, J. Su, Q.S. He, B. Tan, C. Xu, X. Huang, and Q.W. Dai, The Mechanisms of Grain Growth of Mg Alloys: A Review, J. Magn. Alloy, 2022, 10(9), p 2384–2397. https://doi.org/10.1016/j.jma.2022.09.001

    Article  CAS  Google Scholar 

  2. J. Zhang, S. Yan, and H. Qu, Recent Progress in Magnesium Hydride Modified through Catalysis and Nanoconfinement, Int. J. Hydrog. Energy, 2017, 43(3), p 1545–1565. https://doi.org/10.1016/j.ijhydene.2017.11.135

    Article  CAS  Google Scholar 

  3. S.R. Agnew and J.F. Nie, Preface to the Viewpoint Set on: The Current State of Magnesium Alloy Science and Technology, Scr. Mater., 2010, 63(7), p 671–673. https://doi.org/10.1016/j.scriptamat.2010.06.029

    Article  CAS  Google Scholar 

  4. F.S. Pan, M.B. Yang, D.F. Zhang, L.Y. Wang, and P.D. Ding, Research and Development of Wrought Magnesium Alloys in China, Mater. Sci. Forum, 2005, 488, p 413–418. https://doi.org/10.4028/www.scientific.net/MSF.488-489.413

    Article  Google Scholar 

  5. Z. Yang, J.P. Li, J.X. Zhang, G.W. Lorimer, and J. Robson, Review on Research and Development of Magnesium Alloys, Acta Metall. Sin. (Engl. Lett.), 2008, 21(5), p 313–328. https://doi.org/10.1016/S1006-7191(08)60054-X

    Article  CAS  Google Scholar 

  6. Z.R. Zeng, N. Stanford, C.H.J. Davies, J.F. Nie, and N. Birbilis, Magnesium Extrusion Alloys: A Review of Developments and Prospects, Int. Mater. Rev., 2017, 64(1), p 27–62. https://doi.org/10.1080/09506608.2017.1421439

    Article  CAS  Google Scholar 

  7. W.B. Zhou, Z.T. Shao, J.Q. Yu, and J.G. Lin, Advances and Trends in Forming Curved Extrusion Profiles, Materials, 2021, 14(7), p 1603. https://doi.org/10.3390/ma14071603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. X.W. Deng, S.X. Hui, W.J. Ye, R. Liu, and L. Huang, Numerical Simulation Research on Hot Stretch Straightening of Thin-Walled T-Shaped Profile of Titanium Alloy Assisted by Resistance Heating, J. Adv. Manuf. Technol., 2022, 121(9–10), p 6483–6495. https://doi.org/10.1007/s00170-022-09714-y

    Article  Google Scholar 

  9. M. Peach, Advanced Semi-automatic Straightening Technology, Wire J. Int., 2008, 41(7), p 74–79.

    Google Scholar 

  10. H. Lu, H. Ling, J. Leopold, X. Zhang, and C.Q. Guo, Improvement on Straightness of Metal Bar Based on Straightening Stroke-Deflection Model, Sci. China Ser. E Technol. Sci., 2009, 52(7), p 1866–1873. https://doi.org/10.1007/s11431-009-0212-3

    Article  Google Scholar 

  11. T. Welo and F. Widere, Precision Bending of High-Quality Components for Volume Applications, Trans. Nonferrous Met. Soc. China, 2010, 20(11), p 2100–2110. https://doi.org/10.1016/S1003-6326(09)60425-8

    Article  Google Scholar 

  12. J. Yan, D.F. Zhang, X.H. Wang, J. Peng, and L. Yang, The Mathematic Model of Tension Straightening Process of Magnesium Alloy and Experimental Validation, J. Magn. Alloy., 2013, 1(1), p 76–81. https://doi.org/10.1016/j.jma.2013.02.008

    Article  CAS  Google Scholar 

  13. N. Nanu, Analytical Model for Prediction of Springback Parameters in the Case of U Stretch–Bending Process as a Function of Stresses Distribution in the Sheet Thickness, Int. J. Mech. Sci., 2012, 54(1), p 11–21. https://doi.org/10.1016/j.ijmecsci.2012.08.007

    Article  Google Scholar 

  14. R.N. Chen, Q.H. Chen, X. Huang, Q.S. He, J. Su, B. Tan, C. Xu, H.H. Deng, and Q.W. Dai, Effect of Al Content on the Microstructural and Grain Growth Kinetics of Magnesium Alloys, Metals, 2022, 12(11), p 1955. https://doi.org/10.3390/met12111955

    Article  CAS  Google Scholar 

  15. R.N. Chen, Q.H. Chen, P. Peng, B. Tan, X. Huang, Q.S. He, J. Su, C. Xu, H.H. Deng, and Q.W. Dai, Abnormal Grain Growth Induced by <11-20> Orientation of AZ31 Magnesium Alloy, Mater. Sci. Technol., 2023, 39(11), p 1337–1349. https://doi.org/10.1080/02670836.2023.2167297

    Article  CAS  Google Scholar 

  16. J. Xu, B. Jiang, Y.H. Kang, J. Zhao, W.W. Zhang, K.H. Zheng, and F.S. Pan, Tailoring Microstructure and Texture of Mg–3Al–1Zn Alloy Sheets through Curve Extrusion Process for Achieving Low Planar Anisotropy, J. Mater. Sci. Technol., 2021, 113, p 48–60. https://doi.org/10.1016/j.jmst.2021.09.023

    Article  CAS  Google Scholar 

  17. C. Cui, J. He, W.K. Wang, W.Z. Chen, and W.C. Zhang, Microstructure, Texture and Mechanical Properties of Extruded AZ31 Mg Alloy during Small Strain Multi-directional Forging with Gradient Cooling, J. Alloys Compd., 2022, 909, 164795. https://doi.org/10.1016/j.jallcom.2022.164795

    Article  CAS  Google Scholar 

  18. Q.H. Huo, X.Y. Yang, J.J. Ma, H. Sun, J. Wang, and L. Zhang, Texture Weakening of AZ31 Magnesium Alloy Sheet Obtained by a Combination of Bidirectional Cyclic Bending at Low Temperature and Static Recrystallization, J. Mater. Sci., 2013, 48(2), p 913–919. https://doi.org/10.1007/s10853-012-6814-3

    Article  CAS  Google Scholar 

  19. Q.H. Huo, X.Y. Yang, J.J. Ma, H. Sun, J. Qin, and Y.P. Jiang, Microstructural and Textural Evolution of AZ61 Magnesium Alloy Sheet during Bidirectional Cyclic Bending, Mater Charact, 2013, 79(3), p 43–51. https://doi.org/10.1016/j.matchar.2013.03.001

    Article  CAS  Google Scholar 

  20. X.Y. Liu, L.W. Lu, K. Sheng, and T. Zhou, Microstructure and Texture Evolution during the Direct Extrusion and Bending–Shear Deformation of AZ31 Magnesium Alloy, Acta Metall. Sin. (Engl. Lett.), 2019, 32(6), p 710–718. https://doi.org/10.1007/s40195-018-0848-8

    Article  CAS  Google Scholar 

  21. J.F. Deng, J. Tian, Y.C. Zhou, Y.Y. Chang, W. Liang, and J.Y. Ma, Enhanced Formability of Magnesium Alloy Rolled Plates by 10 1 2 Tensile Twinning and Recrystallization, Materials, 2022, 15(18), p 6253. https://doi.org/10.3390/ma15186253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. F.K. Ning, X. Zhou, Q.C. Le, X.Q. Li, L.F. Ma, and W.T. Jia, Investigation of Microstructure and Texture during Continuous Bending of Rolled AZ31 Sheet by Experiment and FEM, J. Mater. Res. Technol., 2019, 8(6), p 6232–6243. https://doi.org/10.1016/j.jmrt.2019.10.017

    Article  CAS  Google Scholar 

  23. J.H. Ter Heege, J.H.P. De Bresser, and C.J. Spiers, Composite Flow Laws for Crystalline Materials with Log-Normally Distributed Grain Size: Theory and Application to Olivine, J. Struct. Geol., 2004, 26(9), p 1693–1705. https://doi.org/10.1016/j.jsg.2004.01.008

    Article  Google Scholar 

  24. D. Sagapuram, M. Efe, W. Moscoso, S. Chandrasekar, and K.P. Trumble, Controlling Texture in Magnesium Alloy Sheet by Shear-Based Deformation Processing, Acta Mater., 2013, 61(18), p 6843–6856. https://doi.org/10.1016/j.actamat.2013.07.063

    Article  CAS  Google Scholar 

  25. D.L. Yin, J.T. Wang, J.Q. Liu, and X. Zhao, On Tension–Compression Yield Asymmetry in an Extruded Mg–3Al–1Zn Alloy, J. Alloys Compd., 2008, 478(1–2), p 789–795. https://doi.org/10.1016/j.jallcom.2008.12.033

    Article  CAS  Google Scholar 

  26. A. Malik, Y.W. Wang, F. Nazeer, M.A. Khan, T. Ali, and Q.T. Ain, Effect of Pre-straining on Twinning, Texture and Mechanical Behavior of Magnesium Alloys A-Review, J. Mater. Res. Technol., 2020, 9(6), p 14478–14499. https://doi.org/10.1016/j.jmrt.2020.10.023

    Article  CAS  Google Scholar 

  27. D.S. Zhou, H. Wang, D.W. Saxey, O. Muránsky, H.W. Geng, W.D.A. Rickard, Z. Quadir, C. Yang, S.M. Reddy, and D.L. Zhang, Hall-Petch Slope in Ultrafine Grained Al-Mg Alloys, Metall. Mater. Trans. A, 2019, 50(9), p 4047–4057. https://doi.org/10.1007/s11661-019-05329-3

    Article  CAS  Google Scholar 

  28. Y. Wang and H. Choo, Influence of Texture on Hall-Petch Relationships in an Mg Alloy, Acta Mater., 2014, 81, p 83–97. https://doi.org/10.1016/j.actamat.2014.08.023

    Article  CAS  Google Scholar 

  29. L.F. Wang, G.S. Huang, T.Z. Han, E. Mostaed, F.S. Pan, and M. Vedani, Effect of Twinning and Detwinning on the Spring-Back and Shift of Neutral Layer in AZ31 Magnesium Alloy Sheets during V-Bend, Mater. Des., 2014, 68, p 80–87. https://doi.org/10.1016/j.matdes.2014.12.017

    Article  CAS  Google Scholar 

  30. L.F. Wang, G.S. Huang, H. Zhang, Y.X. Wang, and L. Yin, Evolution of Springback and Neutral Layer of AZ31B Magnesium Alloy V-Bending under Warm Forming Conditions, J. Mater. Process. Technol., 2013, 213(6), p 844–850. https://doi.org/10.1016/j.jmatprotec.2013.01.005

    Article  CAS  Google Scholar 

  31. S.M. Yin, C.H. Wang, Y.D. Diao, S.D. Wu, and S.X. Li, Influence of Grain Size and Texture on the Yield Asymmetry of Mg-3Al-1Zn Alloy, J. Mater. Sci. Technol., 2011, 27(1), p 29–34. https://doi.org/10.1016/S1005-0302(11)60021-2

    Article  CAS  Google Scholar 

  32. M. Kavyani, G.R. Ebrahimi, H.R. Ezatpour, and M. Jahazi, Microstructure Refinement, Mechanical and Biocorrosion Properties of Mg–Zn–Ca–Mn Alloy Improved by a New Severe Plastic Deformation Process, J. Magn. Alloy., 2020, 10(6), p 1640–1662. https://doi.org/10.1016/j.jma.2020.11.013

    Article  CAS  Google Scholar 

  33. P.L. Mao, Z. Liu, C.Y. Wang, and Z. Wang, Study of the Microstructure of AZ31B Magnesium Alloy under High Strain Rate Deformation, Mater. Sci. Forum, 2011, 686, p 325–331. https://doi.org/10.4028/www.scientific.net/MSF.686.325

    Article  CAS  Google Scholar 

  34. N. Kumar, D. Choudhuri, R. Banerjee, and R.S. Mishra, Strength and Ductility Optimization of Mg–Y–Nd–Zr Alloy by Microstructural Design, Int. J. Plast., 2014, 68, p 77–97. https://doi.org/10.1016/j.ijplas.2014.11.003

    Article  CAS  Google Scholar 

  35. Y. Chen, L. Hu, L. Shi, T. Zhou, J. Tu, Q. Chen, and M.B. Yang, Effect of Texture Types on Microstructure Evolution and Mechanical Properties of AZ31 Magnesium Alloy Undergoing Uniaxial Tension Deformation at Room Temperature, Mater. Sci. Eng. A, 2019, 769, 138497. https://doi.org/10.1016/j.msea.2019.138497

    Article  CAS  Google Scholar 

  36. A. Chapuis, Z.Q. Wang, and Q. Liu, Influence of Material Parameters on Modeling Plastic Deformation of Mg Alloys, Mater. Sci. Eng. A, 2015, 655, p 244–250. https://doi.org/10.1016/j.msea.2015.12.067

    Article  CAS  Google Scholar 

  37. A. Pandey, F. Kabirian, J.H. Hwang, S.H. Choi, and A.S. Khan, Mechanical Responses and Deformation Mechanisms of an AZ31 Mg Alloy Sheet under Dynamic and Simple Shear Deformations, Int. J. Plast., 2015, 68, p 111–131. https://doi.org/10.1016/j.ijplas.2014.12.001

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work is supported by National Natural Science Foundation of China (52371095), Chongqing Overseas Chinese Entrepreneurship and Innovation Support Program (cx2023117), Chongqing Natural Science Foundation Innovation and Development Joint Fund (CSTB 2022NS CQ- LZX0054), Innovation research group of universities in Chongqing (CXQT21030), Chongqing Natural Science Foundation (cstc2019jcyj-msxmX0284).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingwei Dai.

Ethics declarations

Conflict of interest

Informed consent of all authors. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

The manuscript does not involve human tissue experiments.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Shen, A., Zhang, P. et al. Effect of Stretch Bending on the Microstructure and Mechanical Properties of AZ31 Magnesium Alloy. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09555-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09555-8

Keywords

Navigation