Skip to main content
Log in

Development of Mg-Sb-Sn and Mg-Sb-Ca Magnesium Alloys for Automotive Applications: Microstructure, Mechanical Properties, and Corrosion Behavior Analysis

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present study, two Mg-Sb-Sn and Mg-Sb-Ca alloys were prepared, and their microstructure, mechanical and corrosion properties were studied systematically. The microstructure of the Mg-4 wt.% Sb-(2,4 wt.%) Sn alloys showed primary α-Mg as white region and eutectic α-Mg as dark region. As Sn content increased from 2 to 4 wt.%, the Mg3Sb2 and Mg2Sn phases were seemed to be finer and the number of Mg2Sn phases were increased. The Mg-4 wt.% Sb-(2,4 wt.%) Ca alloys composed of α-Mg and MgSbCa phases. As Ca content increased from 2 to 4 wt.%, volume fraction of MgSbCa phase increased and its morphology was changed from shorter network to lengthy skeleton-like structure. The increased amount of finer Mg2Sn and Sb-Sn-rich phases and the α-Mg refinement increased strength of Mg-4 wt.% Sb-4 wt.% Sn alloy compared to Mg-4 wt.% Sb-2 wt.% Sn alloy. The refinement of α-Mg dendrites and a higher fraction of MgSbCa phases increased strength of Mg-4 wt.% Sb-4 wt.% Ca alloy compared to Mg-4 wt.% Sb-2 wt.% Ca alloy. Increased addition of Sn from 2 to 4 wt.% suppressed Mg3Sb2 phases in Mg-4 wt.% Sb-4 wt.% Sn alloy, that deteriorate creep resistance of this alloy related to Mg-4 wt.% Sb-2 wt.% Sn alloy. The presence of lengthy skeleton-type MgSbCa phases reduced creep resistance of Mg-4 wt.% Sb-4 wt.% Ca alloy compared to Mg-4 wt.% Sb-2 wt.% Ca alloy. The long-term immersion test results demonstrated that the corrosion resistance of the Mg-4 wt.% Sb-4 wt.% Sn alloy was higher compared to the Mg-4 wt.% Sb-2 wt.% Sn alloy. Additionally, due to the lower cathode/anode surface area in the Mg-4 wt.% Sb-2 wt.% Ca alloy, it exhibited higher corrosion resistance than the Mg-4 wt.% Sb-4 wt.% Ca alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig.9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig.14
Fig. 15

Similar content being viewed by others

References

  1. B. Liu, J. Yang, X. Zhang, Q. Yang, J. Zhang, and X. Li, Development and Application of Magnesium Alloy Parts for Automotive OEMs: A Review, J. Magnes. Alloy., 2023, 11, p 15–47.

    Article  CAS  Google Scholar 

  2. G.S. Cole, Magnesium Vision 2020-a North American Automotive Strategic Vision for Magnesium, in: IMA-PROCEEDINGS-, 2007 p. 13.

  3. A.A. Luo, Recent Magnesium Alloy Development for Elevated Temperature Applications, Int. Mater. Rev., 2004, 49, p 13–30.

    Article  CAS  Google Scholar 

  4. G. Nayyeri, R. Mahmudi, and F. Salehi, The Microstructure, Creep Resistance, and High-Temperature Mechanical Properties of Mg-5Sn Alloy with Ca and Sb Additions, and Aging Treatment, Mater. Sci. Eng. A, 2010, 527, p 5353–5359.

    Article  Google Scholar 

  5. G. Nayyeri and R. Mahmudi, The Microstructure and Impression Creep Behavior of Cast, Mg-5Sn-xCa Alloys, Mater. Sci. Eng. A, 2010, 527, p 2087–2098. https://doi.org/10.1016/j.msea.2009.11.053

    Article  CAS  Google Scholar 

  6. H. Khalilpour, S. Mahdi Miresmaeili, and A. Baghani, The Microstructure and Impression Creep Behavior of Cast Mg-4Sn-4Ca Alloy, Mater. Sci. Eng. A., 2016, 652, p 365–369. https://doi.org/10.1016/j.msea.2015.11.085

    Article  CAS  Google Scholar 

  7. D. Zhang, B. Li, J. Zhang, T. Niu, C. Li, P. Cheng, and L. Yang, Influence of Minor RE Addition on Microstructures, Tensile Properties, and Creep Resistance in a Die-Cast Mg–Al–Ca–Mn Alloy, J. Mater. Res. Technol., 2023, 26, p 3136–3145.

    Article  CAS  Google Scholar 

  8. H. Patil, A. Marodkar, A. Ghosh, and H. Borkar, Effect of Ca Addition on the Microstructure and Creep Behaviour of AZ91 Mg Alloy. Mater. Today Proc. (2023)

  9. P. Kumar, A.K. Mondal, S.G. Chowdhury, G. Krishna, and A.K. Ray, Influence of Additions of Sb and/or Sr on Microstructure and Tensile Creep Behaviour of Squeeze-Cast AZ91D Mg Alloy, Mater. Sci. Eng. A, 2017, 683, p 37–45.

    Article  CAS  Google Scholar 

  10. I.J. Polmear, Magnesium Alloys and Applications, Mater. Sci. Technol., 2012, 10, p 1–16. https://doi.org/10.1179/026708394790163401

    Article  Google Scholar 

  11. X. Luo, H. Yang, J. Zhou, B. Jiang, Q. Feng, Y. Zeng, W. Li, Z. Dong, J. Song, and J. Xu, Achieving Outstanding Heat-Resistant Mg-Gd-Y-Zn-Mn Alloy via Introducing RE/Zn Segregation on $α$-Mn Nanoparticles, Scr. Mater., 2023, 236, p 115672.

    Article  CAS  Google Scholar 

  12. G. Zhao, Z. Zhang, Y. Zhang, H. Peng, Z. Yang, H. Nagaumi, and X. Yang, Effects of Hot Compression on the Fracture Toughness and Tensile Creep Behaviors of a Mg-Gd-Y-Zn-Zr Alloy, Mater. Sci. Eng. A, 2022, 834, p 142626.

    Article  CAS  Google Scholar 

  13. Z. Yang, J.P. Li, J.X. Zhang, G.W. Lorimer, and J. Robson, Review on Research and Development of Magnesium Alloys, Acta Metall. Sin. (Engl. Lett.), 2008, 21, p 313–328. https://doi.org/10.1016/S1006-7191(08)60054-X

    Article  CAS  Google Scholar 

  14. X. Chen, Q. Li, Y. Zhou, and P. Chen, Creep Behavior and Creep Mechanism of Mg-Gd-Y-Sm-Zr Alloy, Vacuum, 2023, 212, p 112009.

    Article  CAS  Google Scholar 

  15. W.F. Xu, Y. Zhang, L.M. Peng, W.J. Ding, and J.F. Nie, Formation of Denuded Zones in Crept Mg–25 Gd–01 Zr Alloy, Acta Mater., 2015, 84, p 317–329.

    Article  CAS  Google Scholar 

  16. H. Pan, Y. Ren, H. Fu, H. Zhao, L. Wang, X. Meng, and G. Qin, Recent Developments in Rare-Earth Free Wrought Magnesium Alloys Having High Strength: A Review, J. Alloys Compd., 2016, 663, p 321–331.

    Article  CAS  Google Scholar 

  17. Z. Zhang, R. Tremblay, and D. Dube, Microstructure and Mechanical Properties of ZA104 (0.3–0.6Ca) Die-Casting Magnesium Alloys, Mater. Sci. Eng. A., 2004, 385, p 286–291. https://doi.org/10.1016/j.msea.2004.06.063

    Article  CAS  Google Scholar 

  18. R. Rajeshkumar, J. Jayaraj, A. Srinivasan, and U.T.S. Pillai, Investigation on the Microstructure, Mechanical Properties and Corrosion Behavior of Mg-Sb and Mg-Sb-Si Alloys, J. Alloys Compd., 2017, 691, p 81–88.

    Article  CAS  Google Scholar 

  19. A.R. Farkoosh, D.C. Dunand, and D.N. Seidman, Enhanced age-hardening response and creep resistance of an Al-0.5 Mn-0.3 Si (at.%) alloy by Sn inoculation, Acta Mater., 2022, 240, p 118344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. M. Yang and F. Pan, Effects of Y Addition on as-cast Microstructure and Mechanical Properties of Mg–3Sn–2Ca ( wt.%) Magnesium Alloy, Mater. Sci. Eng. A., 2009, 525, p 112–120.

    Article  Google Scholar 

  21. B.H. Kim, K.C. Park, Y.H. Park, and I.M. Park, Effect of Ca and Sr Additions on High Temperature and Corrosion Properties of Mg–4Al–2Sn Based Alloys, Mater. Sci. Eng. A, 2011, 528, p 808–814.

    Article  Google Scholar 

  22. G. Nayyeri and R. Mahmudi, Effects of Sb Additions on the Microstructure and Impression Creep Behavior of a Cast Mg–5Sn Alloy, Mater. Sci. Eng. A, 2010, 527, p 669–678.

    Article  Google Scholar 

  23. Y.C. Lee, A.K. Dahle, and D.H. StJohn, The Role of Solute in Grain Refinement of Magnesium, Metall. Mater. Trans. A, 2000, 31, p 2895–2906.

    Article  Google Scholar 

  24. M. Vogel, O. Kraft, and E. Arzt, Effect of Calcium Additions on the Creep Behavior of Magnesium Die-Cast Alloy ZA85, Metall. Mater. Trans. A, 2005, 36, p 1713–1719.

    Article  Google Scholar 

  25. F. Li, W.Y. Peh, V. Nagarajan, M.K. Ho, A. Danno, B.W. Chua, and M.J. Tan, Development of Non-Flammable High Strength AZ91+ Ca Alloys Via Liquid Forging and Extrusion, Mater. Des., 2016, 99, p 37–43.

    Article  CAS  Google Scholar 

  26. B. Jiang, C. Zhang, T. Wang, Z. Qu, R. Wu, and M. Zhang, Creep Behaviors of Mg–5Li–3Al–(0, 1) Ca alloys, Mater. Des., 2012, 34, p 863–866.

    Article  CAS  Google Scholar 

  27. Y.Z. Du, X.G. Qiao, M.-Y. Zheng, D.B. Wang, K. Wu, and I.S. Golovin, Effect of Microalloying with Ca on the Microstructure and Mechanical Properties of Mg-6 mass% Zn Alloys, Mater. Des., 2016, 98, p 285–293.

    Article  CAS  Google Scholar 

  28. H. Liu, Y. Chen, Y. Tang, S. Wei, and G. Niu, The Microstructure, Tensile Properties, and Creep Behavior of as-Cast Mg–(1–10)% Sn Alloys, J. Alloys Compd., 2007, 440, p 122–126.

    Article  CAS  Google Scholar 

  29. P. Poddar, S. Bagui, K. Ashok, and A.P. Murugesan, Experimental Investigation on Microstructure and Mechanical Properties of Gravity-Die-Cast Magnesium Alloys, J. Alloys Compd., 2017, 695, p 895–908.

    Article  CAS  Google Scholar 

  30. A.S.M. Handbook et al., Alloy Phase Diagrams, vol. 3, ASM Int. Mater. Park. OH. 285 (1992)

  31. N. Tahreen, D.L. Chen, M. Nouri, and D.Y. Li, Influence of Aluminum Content on Twinning and Texture Development of Cast Mg–Al–Zn Alloy During Compression, J. Alloys Compd., 2015, 623, p 15–23.

    Article  CAS  Google Scholar 

  32. N. Hort, Y. Huang, and K.U. Kainer, Intermetallics in Magnesium Alloys, Adv. Eng. Mater., 2006, 8, p 235–240.

    Article  CAS  Google Scholar 

  33. Y. Guangyin, S. Yangshan, and D. Wenjiang, Effects of Sb Addition on the Microstructure and Mechanical Properties of AZ91 Magnesium Alloy, Scr. Mater., 2000, 43, p 1009–1013.

    Article  CAS  Google Scholar 

  34. J. Liu, W. Wang, S. Zhang, D. Zhang, and H. Zhang, Effect of Gd–Ca Combined Additions on the Microstructure and Creep Properties of Mg–7Al–1Si Alloys, J. Alloys Compd., 2015, 620, p 74–79.

    Article  CAS  Google Scholar 

  35. M. Razzaghi, M. Kasiri-Asgarani, H.R. Bakhsheshi-Rad, and H. Ghayour, In vitro Degradation, Antibacterial Activity and Cytotoxicity of Mg-3Zn-x Ag Nanocomposites Synthesized by Mechanical Alloying for Implant Applications, J. Mater. Eng. Perform., 2019, 28, p 1441–1455.

    Article  CAS  Google Scholar 

  36. F. Cao, G.-L. Song, and A. Atrens, Corrosion and Passivation of Magnesium Alloys, Corros. Sci., 2016, 111, p 835–845.

    Article  CAS  Google Scholar 

  37. S.N. Saud, E. Hamzah, T. Abubakar, H.R. Bakhsheshi-Rad, M. Zamri, and M. Tanemura, Effects of Mn Additions on the Structure, Mechanical Properties, and Corrosion Behavior of Cu-Al-Ni Shape Memory Alloys, J. Mater. Eng. Perform., 2014, 23, p 3620–3629.

    Article  CAS  Google Scholar 

  38. Y.S. Jeong and W.J. Kim, Enhancement of Mechanical Properties and Corrosion Resistance of Mg–Ca Alloys Through Microstructural Refinement by Indirect Extrusion, Corros. Sci., 2014, 82, p 392–403.

    Article  CAS  Google Scholar 

  39. R.-C. Zeng, W.-C. Qi, H.-Z. Cui, F. Zhang, S.-Q. Li, and E.-H. Han, In Vitro Corrosion of As-Extruded Mg–Ca alloys—the Influence of Ca Concentration, Corros. Sci., 2015, 96, p 23–31.

    Article  CAS  Google Scholar 

  40. G. Song, B. Johannesson, S. Hapugoda, and D. StJohn, Galvanic Corrosion of Magnesium Alloy AZ91D in Contact with an Aluminium Alloy, Steel and Zinc, Corros. Sci., 2004, 46, p 955–977.

    Article  CAS  Google Scholar 

  41. H.R. Bakhsheshi-Rad, E. Hamzah, S. Farahany, and M.P. Staiger, The Mechanical Properties and Corrosion Behavior of Quaternary Mg-6Zn-0.8 Mn-x Ca alloys, J. Mater. Eng. Perform., 2015, 24, p 598–608.

    Article  CAS  Google Scholar 

  42. H.R. Bakhsheshi-Rad, E. Hamzah, H.Y. Tok, M. Kasiri-Asgarani, S. Jabbarzare, and M. Medraj, Microstructure, in Vitro Corrosion Behavior and Cytotoxicity of Biodegradable Mg-Ca-Zn and Mg-Ca-Zn-Bi Alloys, J. Mater. Eng. Perform., 2017, 26, p 653–666.

    Article  CAS  Google Scholar 

  43. H. Wang, Y. Song, J. Yu, D. Shan, and H. Han, Characterization of Filiform Corrosion of Mg–3Zn Mg Alloy, J. Electrochem. Soc., 2017, 164, p C574.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors wish to thank the Director, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram for allowing us to carryout and publish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Srinivasan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajeshkumar, R., Vignesh, S., Singh, L.K. et al. Development of Mg-Sb-Sn and Mg-Sb-Ca Magnesium Alloys for Automotive Applications: Microstructure, Mechanical Properties, and Corrosion Behavior Analysis. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09539-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09539-8

Keywords

Navigation