Skip to main content
Log in

Elevated-Temperature Tribological Study of Interstitial-Free Steel Subjected to Shot Peening

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The tribological behavior of steels at an elevated temperature plays a vital role in manufacturing processes like rolling, stamping, drawing, deep drawing, etc., where a prominent metal-to-metal contact demands a good wear resistance of the surface. The current investigation is based on improving the tribological behavior of interstitial-free steel by subjecting it to shot peening. The wear test was conducted at four different temperatures: 25, 100, 200, and 400 °C. The shot peening was done in two sets: conventionally shot peening and severe shot peening (SSP). The profile of the wear scar was analyzed in a profilometer, confirming the superiority of the SSPed sample in terms of smaller wear scar and lesser wear rate. Considering the temperature effects, the increase in wear resistance was more prominent at 400 °C due to the trace of thick oxide layers countering the ultrafine, fine oxide layers in the 200 and 100 °C wear conditions. The presence of protective α-Fe2O3 layers and lubricative Fe3O4 layers was advantageous in the tribological aspect, contributing to the formation of a thinner wear scar and lower wear rate. A prominent trace of counter body material was also found in the debris generated at 400 °C wear condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data Availability

Data are available on request.

References

  1. E. Afshin and M. Kadkhodayan, An Experimental Investigation into the Warm Deep-Drawing Process on Laminated Sheets Under Various Grain Sizes, Mater. Des., 2015, 87, p 25–35.

    Article  CAS  Google Scholar 

  2. S. Pandre, N. Kotkunde, A. Morchhale, S.K. Singh, and A. Saxena, Comparative Study of Formability Characteristics in Deep Drawing of DP 590 Steel Using Analytical Models, Adv. Mater. Proc. Technol., 2022, 8(sup3), p 1730–1740.

    Google Scholar 

  3. A.S. Takalkar and L.B.M. Chinnapandi, Deep Drawing Process at the Elevated Temperature: A Critical Review and Future Research Directions, CIRP J. Manuf. Sci. Technol., 2019, 27, p 56–67.

    Article  Google Scholar 

  4. S.K. Singh, K. Mahesh, A. Kumar, and M. Swathi, Understanding Formability of Extra-Deep Drawing Steel at Elevated Temperature Using Finite Element Simulation, Mater. Des., 2010, 31(9), p 4478–4484.

    Article  CAS  Google Scholar 

  5. S. Wan, B.H. Tran, A.K. Tieu, Y. Xia, H. Zhu, S. Cui, and Q. Zhu, The Influence of Water Addition on High-Temperature Tribological Properties of Interstitial Free Steel Sliding Against Different Counterparts, Tribol. Trans., 2018, 61(4), p 713–725.

    Article  CAS  Google Scholar 

  6. X. Cheng, Z. Jiang, B. Kosasih, H. Wu, S. Luo, and L. Jiang, Influence of Cr-rich Oxide Scale on Sliding Wear Mechanism of Ferritic Stainless Steel at High Temperature, Tribol. Lett., 2016, 63, p 1–13.

    Article  CAS  Google Scholar 

  7. H. Kato, Effects of Supply of Fine Oxide Particles Onto Rubbing Steel Surfaces on Severe–Mild Wear Transition and Oxide Film Formation, Tribol. Int., 2008, 41(8), p 735–742.

    Article  CAS  Google Scholar 

  8. F.H. Stott, The Role of Oxidation in the Wear of Alloys, Tribol. Int., 1998, 31(1–3), p 61–71.

    Article  CAS  Google Scholar 

  9. S.E. Lundberg and T. Gustafsson, The Influence of Rolling Temperature on Roll Wear, Investigated in a New High Temperature Test Rig, J. Mater. Process. Technol., 1994, 42(3), p 239–291.

    Article  Google Scholar 

  10. M. Oliaei and R. Jamaati, Improvement of the Strength-Ductility-Toughness Balance in Interstitial-Free Steel by Gradient Microstructure, Mater. Sci. Eng., A, 2022, 845, p 143237.

    Article  CAS  Google Scholar 

  11. S. Hoile, Processing and Properties of Mild Interstitial Free sTeels, Mater. Sci. Technol., 2000, 16(10), p 1079–1093.

    Article  CAS  Google Scholar 

  12. L. Zhou, F. Wu, R. Hall, and C. Davis, Electromagnetic Sensors for in-situ Dynamic Microstructure Monitoring of Recovery and Recrystallisation in Interstitial Free Steels, J. Magn. Magn. Mater., 2022, 551, 169187.

    Article  CAS  Google Scholar 

  13. P.F. Wang, Z. Han, and K. Lu, Enhanced Tribological Performance of a Gradient Nanostructured Interstitial-Free Steel, Wear, 2018, 402, p 100–108.

    Article  Google Scholar 

  14. M.K. Debnath, S. Anishetty, J.D. Majumdar, and I. Manna, Wear and Corrosion Protection of Interstitial Free Steel by Sputter Deposition of Alloy Coating as a Novel Alternative to Galvanizing, J. Mater. Eng. Perform., 2021, 30(8), p 5682–5691.

    Article  CAS  Google Scholar 

  15. M.K. Debnath, S. Anishetty, J. Dutta Majumdar, and I. Manna, Effect of Elemental Coating of Sn or Zn by Magnetron Sputtering on Corrosion and Wear Resistance of Interstitial-Free Steel, INAE Lett., 2019, 4, p 181–189.

    Article  Google Scholar 

  16. N. Kong, J. Zhang, H. Li, B. Wei, and D.R. Mitchell, The Influence of a Novel Inorganic-Polymer Lubricant on the Microstructure of Interstitial-Free Steel During Ferrite Rolling, Metals, 2020, 10(2), p 178.

    Article  CAS  Google Scholar 

  17. T. Wang, J. Wang, X. Zhang, and C. Liu, A Study on Energy Conversion Behavior of Single-Shot Elastic-Plastic Impact During Shot Peen Forming, Int. J. Impact Eng., 2023, 176, p 104566.

    Article  Google Scholar 

  18. Z. Yang, J. Zheng, K. Zhan, and C. Jiang, Investigation on Surface Characteristic and Tribological Behavior of BS960 Steel by Using Micro-shot Peening and Traditional Shot Peening, J. Mater. Eng. Perform., 2023, 32, p 10165.

    Article  CAS  Google Scholar 

  19. Y. Zhang, F. Lai, S. Qu, V. Ji, H. Liu and X. Li, Effect of Shot Peening on Residual Stress Distribution and Tribological Behaviors of 17Cr2Ni2MoVNb Steel, Surf. Coat. Technol., 2020, 386, p 125497.

    Article  CAS  Google Scholar 

  20. Babu, S. S., Padmavathy, R., Anburaj, N., & Shakthivel, M. A tribological study of shot peening process on stainless steel. Mater. Today: Proc. 2023

  21. Y. Wu, Y. Kang, and Y. Chen, Effect of Shot Peening on the Corrosion and Wear Resistance of 2205 Duplex Stainless Steel, J. Mater. Eng. Perform., 2023, 32(7), p 3186–3201.

    CAS  Google Scholar 

  22. A.E. Kudryashov, A.Y. Potanin, D.N. Lebedev, I.V. Sukhorukova, D.V. Shtansky, and E.A. Levashov, Structure and Properties of Cr–Al–Si–B Coatings Produced by Pulsed Electrospark Deposition on a Nickel Alloy, Surf. Coat. Technol., 2016, 285, p 278–288.

    Article  CAS  Google Scholar 

  23. A.E. Kudryashov, E.I. Zamulaeva, E.A. Levashov, F.V. Kiryukhantsev-Korneev, A.N. Sheveiko, and N.V. Shvyndina, Application of Electrospark Deposition and Modified SHS Electrode Materials to Improve the Endurance of Hot Mill Rolls. Part 2. Structure and Properties of the Formed Coatings, Surf. Eng. Appl. Electrochem., 2019, 55, p 502–513.

    Article  Google Scholar 

  24. A.V. Makarov, A.E. Kudryashov, A.A. Vladimirov, A.P. Titova, and N.E. Avdeeva, Application Prospects of ASM 4603-SA Surfacing Material Modified with Hard-Melting Components for Reconstruction of Rollers for Continuous Casting Machines, IOP Conf. Ser. Mater. Sci. Eng.., 2020, 862(3), p 032004.

    Article  CAS  Google Scholar 

  25. J.Ayache, L. Beaunier, J. Boumendil, G. Ehret, D. Laub,. Sample Preparation Handbook for Transmission Electron Microscopy: Techniques (Vol. 2). Springer Science & Business Media, 2010

  26. P.R. Palacios, A. Bustamante, P. Romero-Gómez, and J.C. González, Kinetic Study of the Thermal Transformation of Limonite to Hematite by X-ray Diffraction, μ-Raman and Mössbauer Spectroscopy, Hyperfine Interact., 2011, 203, p 113–118.

    Article  CAS  Google Scholar 

  27. M.C. Caggiani, A. Cosentino, and A. Mangone, Pigments Checker Version 3.0, a Handy Set for Conservation Scientists: A Free online Raman Spectra Database, Microchem. J., 2016, 129, p 123–132.

    Article  CAS  Google Scholar 

  28. S. Gialanella, F. Girardi, G. Ischia, I. Lonardelli, M. Mattarelli, and M. Montagna, On the Goethite to Hematite Phase Transformation, J. Therm. Anal. Calorim., 2010, 102(3), p 867–873.

    Article  CAS  Google Scholar 

  29. A. Parviainen, P. Cruz-Hernández, R. Pérez-López, J.M. Nieto, and J.M. Delgado-López, Raman Identification of Fe Precipitates and Evaluation of As Fate During Phase Transformation in Tinto and Odiel River Basins, Chem. Geol., 2015, 398, p 22–31.

    Article  CAS  Google Scholar 

  30. S.S. Saleem and M.F. Wani, Effect of Load on the Behaviour of Tribofilms Formed at the Interface of Austenitic Steel and Ductile Iron–A Raman Spectroscopic Study, Adv. Mater. Process. Technol., 2022, 8(2), p 1583–1597.

    Google Scholar 

  31. Y.P. Yew, K. Shameli, M. Miyake, N.B.B.A. Khairudin, S.E.B. Mohamad, H. Hara, and K.X. Lee, An Eco-Friendly Means of Biosynthesis of Superparamagnetic Magnetite Nanoparticles Via Marine Polymer, IEEE Trans. Nanotechnol., 2017, 16(6), p 1047–1052.

    Article  CAS  Google Scholar 

  32. M. Blanchard, E. Balan, P. Giura, K. Béneut, H. Yi, G. Morin, and A. Floris, Infrared Spectroscopic Properties of Goethite: Anharmonic Broadening, Long-Range Electrostatic Effects and Al Substitution, Phys. Chem. Miner., 2014, 41, p 289–302.

    Article  CAS  Google Scholar 

  33. L. Xiang, C. Gao, Y. Wang, Z. Pan, and D. Hu, Tribological and Tribochemical Properties of Magnetite Nanoflakes as Additives in Oil Lubricants, Particuology, 2014, 17, p 136–144.

    Article  CAS  Google Scholar 

  34. P. Maurel, L. Weiss, P. Bocher, E. Fleury, and T. Grosdidier, Oxide Dependent Wear Mechanisms of Titanium Against a Steel Counterface: Influence of SMAT Nanostructured Surface, Wear, 2019, 430, p 245–255.

    Article  Google Scholar 

  35. K. Rajan, V.S. Sarma, T.R.G. Kutty, and B.S. Murty, Hot Hardness Behaviour of Ultrafine Grained Ferritic Oxide Dispersion Strengthened Alloys Prepared by Mechanical Alloying and Spark Plasma Sintering, Mater. Sci. Eng. A, 2012, 558, p 492–496.

    Article  CAS  Google Scholar 

  36. H. Torres, M. Varga, and M.R. Ripoll, High Temperature Hardness of Steels and Iron-Based Alloys, Mater. Sci. Eng. A, 2016, 671, p 170–181.

    Article  CAS  Google Scholar 

  37. G.A. Geach, Hardness and Temperature, Int. Metall. Rev., 1974, 19(1), p 255–267. https://doi.org/10.1179/imtlr.1974.19.1.255

    Article  CAS  Google Scholar 

  38. L.B. Peral, P. Ebrahimzadeh, A. Gutiérrez, and I. Fernández-Pariente, Effect of Tempering Temperature and Grain refinement Induced by Severe Shot Peening on the Corrosion Behavior of a Low Alloy Steel, J. Electroanal. Chem., 2023, 932, p 117207.

    Article  CAS  Google Scholar 

  39. J. Liu, X.T. Deng, L. Huang, and Z.D. Wang, Friction and Wear Behavior of Nano/Ultrafine-Grained and Heterogeneous Ultrafine-Grained 18Cr–8Ni Austenitic Stainless Steels, Tribol. Int., 2020, 152, p 106520.

    Article  CAS  Google Scholar 

  40. M.S. Gök, Y. Küçük, A. Erdoğan, M. Öge, E. Kanca, and A. Günen, Dry Sliding Wear Behavior of Borided Hot-Work Tool Steel at Elevated Temperatures, Surf. Coat. Technol., 2017, 328, p 54–62.

    Article  Google Scholar 

  41. Y. Zhao, D. Yang, F. Zhou, L. Liu, P. Wang, P. Gao, and Z. Zhao, Enhanced Strength and Ductility of 24 GPa Hot-Stamped Steel with an Extremely Thin Oxide Layer, Steel Res. Int., 2023, 94(10), p 2200917.

    Article  CAS  Google Scholar 

  42. Z. Cai, S. Wang, Y. Zhou, J. Dong, C. Yu, and L. Ma, The synergistic Effect of Grain Refinement and Precipitation Strengthening on Mechanical Properties and Dry Sliding Wear Behavior of Medium Manganese Steels, Tribol. Int., 2023, 179, p 108158.

    Article  CAS  Google Scholar 

  43. K. Zhou, G. Xiao, J. Xu, and Y. Huang, Wear Evolution of Electroplated Diamond Abrasive Belt and Corresponding Surface Integrity of Inconel 718 During Grinding, Tribol. Int., 2023, 177, p 107972.

    Article  CAS  Google Scholar 

  44. C. Rynio, H. Hattendorf, J. Klöwer, and G. Eggeler, The Evolution of Tribolayers During High Temperature Sliding Wear, Wear, 2014, 315(1–2), p 1–10.

    Article  CAS  Google Scholar 

  45. F.H. Stott, High-Temperature Sliding Wear of Metals, Tribol. Int., 2002, 35(8), p 489–495. https://doi.org/10.1016/S0301-679X(02)00041-5

    Article  CAS  Google Scholar 

  46. F. Wang, X.H. Cui, Z.R. Yang, M.X. Wei, and S.Q. Wang, Oxidation and Tribo-Oxidation of an Alloy Steel H13 at Elevated Temperature, J. Eng. Tribol., 2009, 223(6), p 881–885.

    Google Scholar 

  47. Q.Y. Zhang, S.Q. Wang, and L. Wang, Comparative Study on Wear of Hot-Working Die Steels, Appl. Mech. Mater., 2013, 331, p 559–562.

    Article  CAS  Google Scholar 

  48. X. Song, Z. Qiu, X. Yang, H. Gong, S. Zheng, B. Cao, H. Wang, H. Mohwalg, and D. Shchukin, Submicron-Lubricant Based on Crystallized Fe3O4 Spheres for Enhanced Tribology Performance, Chem. Mater., 2014, 26(17), p 5113–5119.

    Article  CAS  Google Scholar 

  49. B.G. Slavin, D. Child, B. Moore, & W. Hennig, Evaluation of spherical conditioned cut wire in comparison to cast steel shot peening media applied to inconel 718, in Proceedings of the 13th international conference on shot peening, 2017 pp. 189-194.

  50. P. Byczkowska, J. Sawicki, B. Januszewicz, and M. Stegliński, Influence of Single-Stage and Duplex Shot Peening on Surface Roughness and Residual Stresses in Al Mg5 Mn1 Sc0, 8 Zr0, 4 Alloy, Arch. Metall. Mater., 2018, 63(1), p 505–511.

    CAS  Google Scholar 

  51. A.H. Astaraee, S. Bagherifard, E.A. Rajme López, and M. Guagliano, Adapting Shot Peening for Surface Texturing Using Customized Additive Manufactured Shots, Adv. Eng. Mater., 2023, 25, p 2201730. https://doi.org/10.1002/adem.202201730

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Department of MME, CRF NITK, Surathkal for providing the research facilities for the current work.

Funding

There is no funding information to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Udaya Bhat.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, B., Bhat, K.U. Elevated-Temperature Tribological Study of Interstitial-Free Steel Subjected to Shot Peening. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09538-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09538-9

Keywords

Navigation