Skip to main content
Log in

Enhanced Metastable Solubility by Ball Milling of Rapidly Solidified Cu-Co-Mn Ribbon

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Enhancement of solid solubility in binary immiscible Cu-Co system due to thermodynamic contribution from ternary Mn addition and kinetic contribution from use of rapidly solidified ribbons as the precursor of ball milling has been investigated. The impact of ternary addition on the binary system’s free energy change at various concentrations and grain size has been estimated by employing the thermodynamic model proposed by Miedema incorporating appropriate modifications for ternary addition. The solid solubility results obtained from x-ray diffraction analysis of the rapidly solidified ribbons have been compared with the results obtained by the thermodynamic calculation, and an attempt has been made to identify the potential attributes contributing to the mechanically induced solid solubility in the immiscible systems. High-resolution transmission electron microscopy (HRTEM), differential thermal analyzers (DTA) and x-ray diffraction (XRD) have all been used to characterize the phase advancement during rapid solidification, mechanical alloying and isothermal annealing. Using a superconducting quantum interference device magnetometer (SQUID), magnetic characteristics have been investigated. Following annealing in the ball-milled Cu-Co-Mn alloy at 550 °C for 1 h, the ideal combination of magnetic characteristics was achieved.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.L. Greer, Transformations of Metastable Phases, Philos. Mag. B, 1990, 61, p 525–538.

    Article  CAS  Google Scholar 

  2. B.B. Straumal, A.R. Kilmametov, A. Korneva, A.A. Mazilkin, P.B. Straumal, and P. Zięba et al., Phase transitions in Cu-based alloys under high pressure torsion, J. Alloys Compd., 2017, 707, p 20–26.

    Article  CAS  Google Scholar 

  3. C. Suryanarayana, Mechanical alloying and milling, Prog. Mater. Sci., 2001, 46, p 1–184.

    Article  CAS  Google Scholar 

  4. E. Ma and M. Atzmon, Phase Transformations Induced by Mechanical Alloying in Binary Systems, Mater. Chem. Phys., 1995, 39, p 249–267.

    Article  CAS  Google Scholar 

  5. M. Adamzadeh, M.H. Enayati, M. Shamanian, and P. Khayambashi, Tribological Behavior of Ni-Nb Amorphous Coating Fabricated by Mechanical Alloying Method, Tribol. Int., 2023, 177, p 108016.

    Article  CAS  Google Scholar 

  6. A. Chebli, M. Cesnek, A. Djekoun, J.J. Sunol, and D. Niznansky, Synthesis, Characterization and Amorphization of Mechanically Alloyed Fe75Si12Ti6B7 and Fe73Si15Ti5B7 Powders, J. Mater. Sci., 2022, 57, p 12600–12615.

    Article  CAS  Google Scholar 

  7. Q. Luo, X. Fan, B. Miao, B. Shen, and J. Shen, Ar Ion Irradiation Effect on the Soft Magnetic Performance of Fe-Based Amorphous Alloys, J. Magn. Magn. Mater., 2020, 511, p 166962.

    Article  CAS  Google Scholar 

  8. J. Zhu, Q. Luo, M. Cai, B. Ji, and B. Shen, Magnetocaloric Performance and its Linear Relationship with Magnetoresistance in Gd-Al-Cu Metallic Glass, J. Magn. Magn. Mater., 2020, 507, p 166828.

    Article  CAS  Google Scholar 

  9. M. Saravanan, R.M. Pillai, B.C. Pal, M.B. Kumar, and K.R. Ravi, Equal Channel Angular Pressing of Pure Aluminium-an Analysis, Bull. Mater. Sci., 2006, 29, p 679–684.

    CAS  Google Scholar 

  10. A. Vorhauer and R. Rippen, On the Homogeneity of Deformation by High Pressure Torsion, Scr. Mater., 2004, 51, p 921–925.

    Article  CAS  Google Scholar 

  11. H. Bakker, G.F. Zhou, and H. Yang, Mechanically Driven Disorder and Phase Transformations in Alloys, Prog. Mater. Sci., 1995, 39, p 159–241.

    Article  CAS  Google Scholar 

  12. Y. Wang, Y. Huang, W. Liu, Y. Zhang, J. Liu, W. Liu, and Y. Ma, Microstructure and Properties of Intermetallic Compounds of W/Ni/Ta Diffusion Couple, Intermetallics, 2022, 151, p 107732.

    Article  CAS  Google Scholar 

  13. S.A. Kube and J. Schroers, Metastability in High Entropy Alloys, Scripta Mater., 2020, 186, p 392–400.

    Article  CAS  Google Scholar 

  14. J. Li, C.J. Tilbury, S.H. Kim, and M.F. Doherty, A Design Aid for Crystal Growth Engineering, Prog. Mater. Sci., 2016, 82, p 1–38.

    Article  CAS  Google Scholar 

  15. F.J. Gotor, M. Achimovicova, C. Real, and P. Balaz, Influence of the Milling Parameters on the Mechanical Work Intensity in Planetary Mills, Powder Technol., 2013, 233, p 1–7.

    Article  CAS  Google Scholar 

  16. K. Edalati, Y. Hashiguchi, P.H.R. Pereira, Z. Horita, and T.G. Langdon, Effect of Temperature Rise on Microstructural Evolution During High-Pressure Torsion, Mater. Sci. Eng. A, 2018, 714, p 167–171.

    Article  CAS  Google Scholar 

  17. H.J. Fecht, Nanostructure Formation by Mechanical Attrition, Nanostruct. Mater., 1995, 1–4, p 33–42.

    Article  Google Scholar 

  18. J. Weissmuller, Thermodynamics of nanocrystalline solids, Springer Publisher, 2002, p 1-39

  19. M.A. Meyers, A. Mishra, and D.J. Benjson, Mechanical Properties of Nanocrystalline Materials, Prog. Mater. Sci., 2006, 51, p 427–556.

    Article  CAS  Google Scholar 

  20. C.C. Koch, Optimization of Strength and Ductility in Nanocrystalline and Ultrafine Grained Metals, Scr. Mater., 2003, 49, p 657–662.

    Article  CAS  Google Scholar 

  21. W. Zhang, P.K. Liaw, and Y. Zhang, Science and Technology in High-Entropy Alloys, Sci. China Mater., 2018, 61, p 2–22.

    Article  CAS  Google Scholar 

  22. Y.D. Dong, Y. Shi, Y.L. He, S.R. Yang, S.Y. Yu, Z. Xiong, H. Zhang, G. Yao, C.S. He, and B. Lai, Synthesis of Fe–Mn-Based Materials and their Applications in Advanced Oxidation Processes for Wastewater Decontamination: A Review, Ind. Eng. Chem. Res., 2023, 62(28), p 10828–10848.

    Article  CAS  Google Scholar 

  23. K. Sakurai, M. Mori, and U. Mizutane, Extended X-Ray-Absorption Fine-Structure Studies on Ball-Milled Powders of the Immiscible System Cu-V, Phys. Rev. B, 1992, 46, p 5711.

    Article  CAS  Google Scholar 

  24. S. Chabri, S. Bera, B.N. Mondal, A. Basumallick, and P.P. Chattopadhyay, Microstructure and Magnetic Behavior of Cu-Co-Si Ternary Alloy Synthesized by Mechanical Alloying and Isothermal Annealing, J. Magn. Magn. Mater., 2017, 426, p 454–458.

    Article  CAS  Google Scholar 

  25. B.N. Mondal, S. Chabri, A. Basumallick, and P.P. Chattopadhyay, Influence of Ternary Addition of Transition Elements (Cr, Si and Mn) on the Microstructure and Magnetic Properties of Nano-Structured Cu-Co Alloy, J. Magn. Magn. Mater., 2012, 324, p 2776–2780.

    Article  CAS  Google Scholar 

  26. M. Burtscher, M. Alfreider, C. Kainz, and D. Kiener, In situ Micromechanical Analysis of a Nano-Crystalline W-Cu Composite, Mater. Des., 2022, 220, p 110848.

    Article  CAS  Google Scholar 

  27. N. Al-Aqeeli, M.A. Hussein, and C. Suryanarayana, Phase Evolution During High Energy Ball Milling of Immiscible Nb-Zr Alloys, Adv. Powder Technol., 2015, 26, p 385–391.

    Article  CAS  Google Scholar 

  28. H.H. Fu, D.J. Benson, and M.A. Mayers, Computational Description of Nanocrystalline Deformation Based on Crystal Plasticity, Acta Mater., 2004, 52, p 4413–4425.

    Article  CAS  Google Scholar 

  29. P.P. Chattopadhyay, S.K. Pabi, and I. Manna, On the Inverse Hall-Petch Relationship in Nanocrystalline Materials, Int. J. Mater. Res., 2000, 91, p 1049.

    Article  CAS  Google Scholar 

  30. J. Lyubina, O. Gutfleish, R. Skomski, K.-H. Muller, and L. Schultz, Phase Transformations and Thermodynamic Properties of Nanocrystalline FePt Powders, Scripta Mater., 2005, 53, p 469–474.

    Article  CAS  Google Scholar 

  31. D.B. Miracle and O.N. Senkov, A Critical Review of High Entropy Alloys and Related Concepts, Acta Mater., 2017, 122, p 448–511.

    Article  CAS  Google Scholar 

  32. V.P. Nascimento, E.C. Passamani, A.Y. Takeuchi, C. Larica, and E. Nunes, Single Magnetic Domain Precipitates of Fe/Co and Fe and Co in Cu Matrix Produced from (Fe-Co)/Cu Metastable Alloys, J. Phys. Condens. Matter, 2001, 13, p 665.

    Article  CAS  Google Scholar 

  33. H. Gleiter, Nanostructured Materials: Basic Concepts and Microstructure, Acta Mater., 2000, 48, p 1–29.

    Article  CAS  Google Scholar 

  34. P. Liu, Y. Xu, L. Yin, S. Ma, L. Han, and Z. Wang, Effect of thermal treatment on optical and electrical properties of Cu0.59(ZrO2)0.41 composite nanoglass film, J. Non Cryst. Solids, 2022, 597, p 121908.

    Article  CAS  Google Scholar 

  35. S. Tao, Z. Ahmad, P. Zhang, X. Zheng, and S. Zhang, Magnetic and structural properties of rapidly solidified Nd3Pr3Fe67Co3Nb3Ti1B20 nanomagnet, J. Magn. Magn. Mater., 2021, 533, p 167998.

    Article  CAS  Google Scholar 

  36. N. Badar, H.M. Yusoff, K. Elong, and N. Kamarulzaman, Crystallite size reduction of Cr doped Al2O3 materials via optimized high-energy ball milling method, Adv. Powder Technol., 2023, 34, p 104102.

    Article  CAS  Google Scholar 

  37. N.R. Álvarez, J.E. Gómez, M. Vásquez Mansilla, B. Pianciola, D.G. Actis, and G.J. Gilardi et al., Magnetic Coupling of Stripe Domains in FePt/Ni80Fe20 Bilayers, J. Phys. D Appl. Phys., 2017, 50, p 115001.

    Article  Google Scholar 

  38. P.J. Schilling, V. Palshin, R.C. Tittswoth, J.H. He, and E. Ma, Overlapping Solid Solubility in Mechanically Alloyed Fe-Ni and Fe-Cu, Phys. Rev. B, 2003, 68, p 224204.

    Article  Google Scholar 

  39. B.S. Murty and S. Ranganathan, Novel Materials Synthesis by Mechanical Alloying/Milling, Int. Mater. Rev., 2013, 43, p 101–141.

    Article  Google Scholar 

  40. M. Nabiałek, P. Pietrusiewicz, and K. Błoch, Influence of the Production Method of Fe61Co10Y8W1B20 Amorphous Alloy on the Resulting Microstructure and Hyperfine Field Distribution, J. Alloys Compd., 2015, 628, p 424–428.

    Article  Google Scholar 

  41. A.K. Niessen, F.R. de Boer, R. Boom, P.F. de Chatel, W.C.M. Mattens, and A.R. Miedema, Model Predictions for the Enthalpy of Formation of Transition Metal Alloys II, Calphad, 1983, 7, p 51–70.

    Article  CAS  Google Scholar 

  42. A.R. Miedema, F.R. de Boer, and P.F. de Chatel, Empirical Description of the Role of Electronegativity in Alloy Formation, J. Phys. F Met. Phys., 1973, 3, p 1558–1566.

    Article  CAS  Google Scholar 

  43. X. Zhu, Y. He, Q. Feng, N. Wang, C. Ge, and Y. Xu, Deformation Mechanism of L12-type Multicomponent Intermetallics: The Generalized Stacking Fault Energy and Chemical Bonds, Mater. Des., 2023, 228, p 111824–111835.

    Article  CAS  Google Scholar 

  44. A.R. Miedema and A.K. Niessen, Volume Effects Upon Alloying of Two Transition Metals, Physica B+C, 1982, 114, p 367–374.

    Article  CAS  Google Scholar 

  45. S.R. Meenuga, D.A. Babu, B. Majumdar, A.K. Birru, K. Guruvidyathri, and M.M. Raja, A Comparative Study on Nanocrystalline Soft Magnetic Fe-Si-B-Nb-Cu Alloys Made of Pure Elements and Ferro-Alloys, J. Magn. Magn. Mater., 2023, 584, p 171087.

    Article  CAS  Google Scholar 

  46. T. Gheiratmand and H.R.M. Hosseini, Finemet Nanocrystalline Soft Magnetic Alloy: Investigation of Glass Forming Ability, Crystallization Mechanism, Production Techniques, Magnetic Softness and the Effect of Replacing the Main Constituents by Other Elements, J. Magn. Magn. Mater., 2016, 408, p 177–192.

    Article  CAS  Google Scholar 

  47. V.P. Nascimento, E.C. Passamani, A.Y. Takeuchi, C. Larica, and E. Nunes, Single Magnetic Domain Precipitates of Fe/Co and Fe and Co in Cu Matrix Produced From (Fe-Co)/Cu Metastable Alloys, J. Condens. Matter Phys., 2001, 13, p 665.

    Article  CAS  Google Scholar 

  48. J. Restrepo, J.M. Greneche, A. Hernando, P. Crespo, M.A. Garcia, F.J. Palomares, and J.M. González, Magnetic Properties of Ball Milled Cu70Fe15Mn15, J. Magn. Magn. Mater., 2005, 290–291, p 602–605.

    Article  CAS  Google Scholar 

  49. B.N. Mondal, S. Chabri, G. Sardar, D.N. Nath, and P.P. Chattopadhyay, Structural, Thermal and Magnetic Investigations on Immiscible Ag-Co Nanocrystalline Alloy with Addition of Mn, J. Magn. Magn. Mater., 2016, 412, p 138–146.

    Article  CAS  Google Scholar 

  50. Y.J. Shen, L.C. Liu, S.T. Mi, H.R. Gong, and S.F. Zhou, Construction of an n-Body Fe-Cu Potential and its Application in Atomistic Modeling of Fe-Cu Solid Solutions, J. Appl. Phys., 2020, 127, p 045104.

    Article  CAS  Google Scholar 

  51. S. Chabri, Morphology and Magnetic Characteristics of Cu-Co/CNT Nano-composite Synthesized by Mechanical Alloying, J. Mater. Eng. Perform. 2023, p 1–7

Download references

Acknowledgments

Sumit Chabri appreciates the financial assistance provided by the Project ID RDDR2013004 from the Institute of Engineers (India). Professor K. Chattopadhyay, Retired Professor, Department of Materials Engineering, Indian Institute of Science, Bangalore, and Prof. P.P. Chattopadhyay, Director, NIAMT, Ranchi, approval of this research activity and their kind permission to publish it are both appreciated and the authors are grateful. Ball milling, XRD and DTA tests were supported by the Indian Institute of Engineering Science and Technology, Shibpur, India, and Indian Institute of Science, Bangalore, India, for access to RSP, HRTEM and magnetic measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit Chabri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chabri, S., Tiwary, C.S. Enhanced Metastable Solubility by Ball Milling of Rapidly Solidified Cu-Co-Mn Ribbon. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09524-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09524-1

Keywords

Navigation