Skip to main content

Advertisement

Log in

Hardening and Strengthening Effects Induced by Incorporation of Titanium in Hexagonal Boron Nitride Ceramics

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this research, the effects of different amounts of titanium on the sinterability, microstructure, hardness, and flexural strength of spark plasma sintered hBN-based materials were studied. The addition of 20 wt.% Ti improved the relative density of hBN by almost 6% because of progressing a chemical reaction between Ti and the hBN matrix. Although the x-ray diffraction spectrums suggested the in-situ formation of TiN0.9, together with the TiB2 phase, further investigation revealed the diffusion of boron atoms from the TiB2 compound into the non-stoichiometric TiN0.9, creating Ti(N,B) solid solution. This phenomenon was also found to be responsible for improvements in the mechanical properties of the SPSed samples. The flexural strength of hBN was noticeably improved by incorporating titanium additive, benefiting from the in-situ formation of titanium diboride and Ti(N,B) compounds. The composite reinforced with 20 wt.% Ti secured the highest Vickers hardness (~ 95 VH0.1 kg) and flexural strength (~ 150 MPa).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Abdolahpour Salari, G. Merhan Muğlu, M. Rezaei, M. Saravana Kumar, H. Pulikkalparambil, and S. Siengchin, In-Situ Synthesis of TiN and TiB2 Compounds during Reactive Spark Plasma Sintering of BN-Ti Composites, Syn. Sint., 2021, 1, p 48–53. https://doi.org/10.53063/synsint.2021.119

    Article  Google Scholar 

  2. W.L. Du Frane, O. Cervantes, G.F. Ellsworth, and J.D. Kuntz, Consolidation of Cubic and Hexagonal Boron Nitride Composites, Diam. Relat. Mater., 2016, 62, p 30–41. https://doi.org/10.1016/j.diamond.2015.12.003

    Article  CAS  Google Scholar 

  3. X.J. Gao, D.M. Yan, J.W. Cao, C. Zhang, X.M. Mu, Y.W. Zhou, M. Wang, F.Z. Qu, G. Bin Li, G.J. Wang, and D.J. Zhang, The Study on the Property and the Microstructure of Pressureless Sintered h-BN Ceramics, Adv. Mat. Res., 2015, 1104, p 9–14. https://doi.org/10.4028/www.scientific.net/amr.1104.9

    Article  Google Scholar 

  4. X. Duan, D. Jia, Z. Wang, D. Cai, Z. Tian, Z. Yang, P. He, S. Wang, and Y. Zhou, Influence of Hot-Press Sintering Parameters on Microstructures and Mechanical Properties of h-BN Ceramics, J. Alloys Compd., 2016, 684, p 474–480. https://doi.org/10.1016/j.jallcom.2016.05.153

    Article  CAS  Google Scholar 

  5. A. Lipp, K.A. Schwetz, and K. Hunold, Hexagonal Boron Nitride: Fabrication, Properties and Applications, J. Eur. Ceram. Soc., 1989, 5, p 3–9. https://doi.org/10.1016/0955-2219(89)90003-4

    Article  CAS  Google Scholar 

  6. T.B. Wang, C.C. Jin, J. Yang, C.F. Hu, and T. Qiu, Physical and Mechanical Properties of Hexagonal Boron Nitride Ceramic Fabricated by Pressureless Sintering Without Additive, Adv. Appl. Ceram., 2015, 114, p 273–276. https://doi.org/10.1179/1743676114Y.0000000226

    Article  CAS  Google Scholar 

  7. I. FarahBakhsh, R. Antiochia, and H.W. Jang, Pressureless Sinterability Study of ZrB2-SiC Composites Containing Hexagonal BN and Phenolic Resin Additives, Syn. Sint., 2021, 1, p 99–104. https://doi.org/10.53063/synsint.2021.1231

    Article  Google Scholar 

  8. T. Hagio and H. Yoshida, Sintering and Crystallization of Ground Hexagonal Boron Nitride Powders, J. Mater. Sci. Lett., 1994, 13, p 653–655. https://doi.org/10.1007/BF00271224

    Article  CAS  Google Scholar 

  9. H. Yang, F. Gao, M. Dai, D. Jia, Y. Zhou, and P. Hu, Recent Advances in Preparation, Properties and Device Applications of Twodimensional h-BN and its Vertical Heterostructures, J. Semicond., 2017 https://doi.org/10.1088/1674-4926/38/3/031004

    Article  Google Scholar 

  10. T. Hagio, K. Kobayashi, H. Yoshida, H. Yasunaga, and H. Nishikawa, Sintering of the Mechanochemically Activated Powders of Hexagonal Boron Nitride, J. Am. Ceram. Soc., 1989, 72, p 1482–1484. https://doi.org/10.1111/j.1151-2916.1989.tb07682.x

    Article  CAS  Google Scholar 

  11. B. Ertug, Powder Preparation, Properties and Industrial Applications of Hexagonal Boron Nitride, Sintering Applications. B. Ertug Ed., InTech, 2013. https://doi.org/10.5772/53325

    Chapter  Google Scholar 

  12. C. Steinborn, M. Herrmann, U. Keitel, A. Schönecker, J. Räthel, D. Rafaja, and J. Eichler, Correlation Between Microstructure and Electrical Resistivity of Hexagonal Boron Nitride Ceramics, J. Eur. Ceram. Soc., 2013, 33, p 1225–1235. https://doi.org/10.1016/j.jeurceramsoc.2012.11.024

    Article  CAS  Google Scholar 

  13. H. Yang, H. Fang, H. Yu, Y. Chen, L. Wang, W. Jiang, Y. Wu, and J. Li, Low Temperature Self-Densification of High Strength Bulk Hexagonal Boron Nitride, Nat. Commun., 2019 https://doi.org/10.1038/s41467-019-08580-9

    Article  PubMed  PubMed Central  Google Scholar 

  14. N.S. Peighambardoust, Ç. Çevik, T. Assar, S. Jung, S.Y. Lee, and J.H. Cha, Pulsed Electric Current Sintering of TiB2-Based Ceramics Using Nitride Additives, Syn. Sint., 2021, 1, p 28–33. https://doi.org/10.53063/synsint.2021.1112

    Article  Google Scholar 

  15. X. Duan, D. Jia, Z. Wu, Z. Tian, Z. Yang, S. Wang, and Y. Zhou, Effect of Sintering Pressure on the Texture of Hot-Press Sintered Hexagonal Boron Nitride Composite Ceramics, Scr. Mater., 2013, 68, p 104–107. https://doi.org/10.1016/j.scriptamat.2012.09.012

    Article  CAS  Google Scholar 

  16. J.X. Xue, J.X. Liu, B.H. Xie, and G.J. Zhang, Pressure-Induced Preferential Grain Growth, Texture Development and Anisotropic Properties of Hot Pressed Hexagonal Boron Nitride Ceramics, Scr. Mater., 2011, 65, p 966–969. https://doi.org/10.1016/j.scriptamat.2011.08.025

    Article  CAS  Google Scholar 

  17. S. Haghgooye Shafagh, S. Jafargholinejad, and S. Javadian, Beneficial Effect of low BN Additive on Densification and Mechanical Properties of Hot-Pressed ZrB2-SiC Composites, Syn. Sint., 2021, 1, p 69–75. https://doi.org/10.53063/synsint.2021.1224

    Article  Google Scholar 

  18. T. Kusunose and T. Sekino, Thermal Conductivity of Hot-Pressed Hexagonal Boron Nitride, Scr. Mater., 2016, 124, p 138–141. https://doi.org/10.1016/j.scriptamat.2016.07.011

    Article  CAS  Google Scholar 

  19. M. Hubacek and M. Ueki, Pressureless-Sintered Limited Content Boron of Boric Nitride Oxide, Mater. Sci. Res. Int., 1995, 1, p 209–212.

    CAS  Google Scholar 

  20. F.R. Zhai, M. Lu, K. Shan, Z.Z. Yi, and Z.P. Xie, Spark Plasma Sintering and Characterization of Mixed h-BN Powders with Different Grain Sizes, Solid State Phenomena, 2018, 281, p 414–419. https://doi.org/10.4028/www.scientific.net/SSP.281.414

    Article  Google Scholar 

  21. F. Olevsky, P. Mogilevsky, E.Y. Gutmanas, and I. Gotman, Synthesis of In Situ TiB2/TiN Ceramic Matrix Composites from Dense BN-Ti and BN-Ti-Ni Powder Blends, Metall. Mater Trans, A Phys. Metall. Mater. Sci., 1996, 27, p 2071–2079. https://doi.org/10.1007/BF02651860

    Article  Google Scholar 

  22. T. Saito and F. Honda, Chemical Contribution to Friction Behavior of Sintered Hexagonal Boron Nitride in Water, Wear, 2000, 237, p 253–260. https://doi.org/10.1016/S0043-1648(99)00346-4

    Article  CAS  Google Scholar 

  23. Y. Cao, L. Du, C. Huang, W. Liu, and W. Zhang, Wear Behavior of Sintered Hexagonal Boron Nitride under Atmosphere and Water Vapor Ambiences, Appl. Surf. Sci., 2011, 257, p 10195–10200. https://doi.org/10.1016/j.apsusc.2011.07.018

    Article  CAS  Google Scholar 

  24. M. Kitiwan, A. Ito, and T. Goto, Phase Transformation and Densification of hBN-TiN Composites Fabrication by Spark Plasma Sintering, Key Eng. Mater., 2012, 508, p 52–55. https://doi.org/10.4028/www.scientific.net/KEM.508.52

    Article  CAS  Google Scholar 

  25. N. Ay and I. Tore, Pressureless Sintering of Hexagonal Boron Nitride Powders, Mater. Sci. Forum, 2007, 554, p 207–212. https://doi.org/10.4028/www.scientific.net/msf.554.207

    Article  CAS  Google Scholar 

  26. S.A. Delbari, J. Lee, M. Sheikhlou, A.S. Namini, S. Jung, J.H. Cha, S.-H. Lee, R.S. Varma, H.W. Jang, and M. Shokouhimehr, Effect of IRON Nanoparticles on Spark Plasma Sinterability of ZrB2-Based Ceramics, J. Aust. Ceram. Soc., 2022, 58, p 1117–1128. https://doi.org/10.1007/s41779-022-00777-4

    Article  CAS  Google Scholar 

  27. S.A. Delbari, A.S. Namini, S. Lee, S. Jung, J. Wang, S.-H. Lee, J.H. Cha, J.H. Cho, H.W. Jang, S.Y. Kim, and M. Shokouhimehr, Microstructural and Nanoindentation Study of TaN Incorporated ZrB2 and ZrB2-SiC Ceramics, Sci. Rep., 2022, 12, p 13765. https://doi.org/10.1038/s41598-022-17797-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. V.-H. Nguyen, M. Shahedi Asl, S.A. Delbari, Q. Van Le, A. Sabahi Namini, J.H. Cha, S.-H. Lee, H.W. Jang, M. Mustapha, M. Mohammadi, and M. Shokouhimehr, Microstructural Evolution during Spark Plasma Sintering of TiC-AlN-Graphene Ceramics, Int. J. Refract. Metals Hard Mater., 2021, 96, p 105496. https://doi.org/10.1016/j.ijrmhm.2021.105496

    Article  CAS  Google Scholar 

  29. A. Sabahi Namini, S.A. Delbari, N. Baydogan, M. Vajdi, F. Sadegh Moghanlou, and M. Shahedi Asl, Spark Plasma Sinterability of TiC Ceramics with Different Nitride Additives, J. Taiwan Inst. Chem. Eng., 2021, 123, p 363–370. https://doi.org/10.1016/j.jtice.2021.05.004

    Article  CAS  Google Scholar 

  30. H. Yu, A. Sabahi Namini, S.A. Delbari, M. Sheikhlou, A. Abdolmaleki, S. Jung, J. Lee, J. Wang, Q. Van Le, S.Y. Kim, H.W. Jang, and M. Shokouhimehr, Nanoindentation and TEM Investigation of Spark Plasma Sintered TiB2-SiC Composite, Ceram. Int., 2022, 48, p 20285–20293. https://doi.org/10.1016/j.ceramint.2022.03.309

    Article  CAS  Google Scholar 

  31. M. Shahedi Asl, A. Sabahi Namini, S.A. Delbari, Q. Van Le, M. Shokouhimehr, and M. Mohammadi, A TEM Study on the Microstructure of Spark Plasma Sintered ZrB2-Based Composite with Nano-Sized SiC Dopant, Prog. Nat. Sci. Mater. Int., 2021, 31, p 47–54. https://doi.org/10.1016/j.pnsc.2020.11.010

    Article  CAS  Google Scholar 

  32. S. Jafargholinejad and S. Soleymani, Effects of Carbon Nano-Additives on Characteristics of TiC Ceramics Prepared by Field-Assisted Sintering, Syn. Sint., 2021, 1, p 62–68. https://doi.org/10.53063/synsint.2021.1123

    Article  Google Scholar 

  33. V.-H. Nguyen, S.A. Delbari, M. Shahedi Asl, Q. Van Le, Z. Ahmadi, M. Farvizi, M. Mohammadi, M. Shokouhimehr, and A. Sabahi Namini, ZrB2SiCw Composites with Different Carbonaceous Additives, Int. J. Refract. Metals. Hard Mater., 2021, 95, p 105457. https://doi.org/10.1016/j.ijrmhm.2020.105457

    Article  CAS  Google Scholar 

  34. S.A. Delbari, M.S. Shakeri, I. Salahshoori, M. Shahedi Asl, A. Sabahi Namini, A. Abdolmaleki, M. Sheikhlou, M. Farvizi, H.W. Jang, and M. Shokouhimehr, Characterization of TiC Ceramics with SiC and/or WC Additives Using Electron Microscopy and Electron Probe Micro-Analysis, J. Taiwan Inst. Chem. Eng., 2021, 123, p 245–253. https://doi.org/10.1016/j.jtice.2021.05.039

    Article  CAS  Google Scholar 

  35. H. Yu, A. Sabahi Namini, S.A. Delbari, Q. Van Le, D. Kim, J.H. Cha, S.-H. Lee, S.Y. Kim, H.W. Jang, and M. Shokouhimehr, Microstructure of Spark Plasma Sintered TiC-TiB2-SiCw Composite, Mater. Chem. Phys., 2022, 281, p 125877. https://doi.org/10.1016/j.matchemphys.2022.125877

    Article  CAS  Google Scholar 

  36. Z. Bahararjmand, M.A. Khalilzadeh, F. Saberi-Movahed, T.H. Lee, J. Wang, S. Lee, and H.W. Jang, Role of Si3N4 on Microstructure and Hardness of Hot-Pressed ZrB2-SiC Composites, Syn. Sint., 2021, 1, p 34–40. https://doi.org/10.53063/synsint.2021.1113

    Article  Google Scholar 

  37. H. Yu, M.S. Shakeri, A. Sabahi Namini, S.A. Delbari, Q. Van Le, J. Lee, S.Y. Kim, S.-H. Lee, H.W. Jang, Z. Swiatkowska-Warkocka, and M. Shokouhimehr, HRTEM and XPS Characterizations for Probable Formation of TiBxNy Solid Solution during Sintering Process of TiB2-20SiC-5Si3N4 Composite, Mater. Chem. Phys., 2022, 288, p 126380. https://doi.org/10.1016/j.matchemphys.2022.126380

    Article  CAS  Google Scholar 

  38. M. Kitiwan, A. Ito, and T. Goto, B Deficiency in TiB2 and B solid Solution in TiN in TiN-TiB2 Composites Prepared by spark Plasma SINTERING, J. Eur. Ceram. Soc., 2012, 32, p 4021–4024. https://doi.org/10.1016/j.jeurceramsoc.2012.06.024

    Article  CAS  Google Scholar 

  39. M. Shokouhimehr, S.A. Delbari, A.S. Namini, E. Taghizadeh, S. Jung, J.H. Cho, Q. Van Le, J.H. Cha, S.Y. Kim, and H.W. Jang, Nanostructure and Nanoindentation Study of Pulse Electric-Current Sintered TiB2-SiC-Cf Composite, Sci. Rep., 2023, 13, p 379. https://doi.org/10.1038/s41598-022-27186-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deyun Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Liu, D., Zhang, B. et al. Hardening and Strengthening Effects Induced by Incorporation of Titanium in Hexagonal Boron Nitride Ceramics. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09516-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09516-1

Keywords

Navigation