Skip to main content
Log in

Tribological Properties of Surface Alloyed AISI 1045 Steel with Titanium in a Nitrogen Containing Atmosphere

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

AISI 1045 plain carbon steel was surface melted and alloyed with titanium under shielding of pure argon and a mixture of argon-nitrogen gases, using a tungsten inert gas (TIG) heat source. The formation of TiC and TiCN was noticed in the alloyed zone under the shielding of pure argon and argon-nitrogen mixture, respectively. The incorporation of nitrogen in the shielding gas also increased the dimensions of the alloyed layer. In addition, the results revealed that the maximum hardness for the surface melted sample under pure argon and argon-nitrogen gases were 803 and 769 HV0.1, respectively. A pin on disk tribometer was used to study the tribological behaviors of the surface treated layers against hardened AISI 52100 steel. The wear rate of the surface melted specimen treated under a gas mixture of argon and nitrogen was the lowest among all the treated materials which was about 2.15 × 10−3 mg/m2, four times lower than that of bare steel. Surface alloying with titanium and the formation of the carbide and nitride components did not result in a wear rate lower than that of the surface melted material. Study of the worn surfaces also revealed that the dominant wear mechanisms of the surface treated materials are likely to be oxidative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.A. Cherry, H.M. Davies, S. Mehmood, and N.P. Lavery, Investigation Into the Effect of Process Parameters on Microstructural and Physical Properties of 316L Stainless Steel Parts by Selective Laser Melting, Int. J. Adv. Manuf. Technol., 2015, 76, p 869–879. https://doi.org/10.1007/s00170-014-6297-2

    Article  Google Scholar 

  2. I.A. Bataev, D.O. Mul, A.A. Bataev, O.G. Lenivtseva, M.G. Golkovski, Y.S. Lizunkova, and R.A. Dostovalov, Structure and Tribological Properties of Steel after Non-Vacuum Electron Beam Cladding of Ti, Mo and Graphite Powders, Mater Charact, 2015 https://doi.org/10.1016/j.matchar.2015.11.028

    Article  Google Scholar 

  3. D. Luo, G. Tang, X. Ma, L. Gu, L. Wang, T. Wu, and F. Ma, The Microstructure of Ta Alloying Layer on M50 Steel After Surface Alloying Treatment Induced by High Current Pulsed Electron Beam, Vacuum, 2017, 136, p 121–128. https://doi.org/10.1016/j.vacuum.2016.11.036

    Article  CAS  Google Scholar 

  4. P. Krakhmalev, I. Yadroitsava, G. Fredriksson, and I. Yadroitsev, In Situ Heat Treatment in Selective Laser Melted Martensitic AISI 420 Stainless Steels, Mater. Des., 2015, 87, p 380–385. https://doi.org/10.1016/j.matdes.2015.08.045

    Article  CAS  Google Scholar 

  5. N. Ahmadi, H. Naffakh-Moosavy, S.M.M. Hadavi, and F. Bagheri, The Effect of Nd:YAG Laser Parameters on the Microstructure, Hot Cracking Susceptibility and Elemental Evaporation of Surface Melted AZ80 Magnesium-Based Alloy, J. Mater. Res. Technol., 2023, 27, p 2459–2474. https://doi.org/10.1016/j.jmrt.2023.10.088

    Article  CAS  Google Scholar 

  6. C. Arnold, J. Böhm, and C. Körner, In Operando Monitoring by Analysis of Backscattered Electrons during Electron Beam Melting, Adv. Eng. Mater., 2020 https://doi.org/10.1002/adem.201901102

    Article  Google Scholar 

  7. S.R. Singh and P. Khanna, A-TIG (activated flux tungsten inert gas) welding: A review, Mater. Today Proc., 2021, 44, p 808–820. https://doi.org/10.1016/j.matpr.2020.10.712

    Article  Google Scholar 

  8. C. Chen, W. Du, H. Zhang, and X. Zhao, Improvement of Microstructure and Mechanical Properties of Stainless Steel TIG Based Wire Arc Additive Manufacturing by Using AC/DC Mix Current Waveform, J. Mater. Res. Technol., 2023, 23, p 4355–4366. https://doi.org/10.1016/j.jmrt.2023.02.093

    Article  CAS  Google Scholar 

  9. J. Ray, S.K. Acharyya, and D. Misra, Review on TIG cladding process and its comparative study with laser surface treatment Review on TIG Cladding Process and its Comparative Study with Laser Surface Treatment, AIP Conf. Proc., 2022, 2640, p 020021.

    Article  CAS  Google Scholar 

  10. A. Idris, M. Maleque, and A. Afiq, Synthetization of TiC Surface Hardening Using TIG Melting Technique—The Effect of Working Distance Synthetization of TiC Surface Hardening Using TIG Melting Technique—The Effect of Working Distance, IOP Conf. Ser. Mater. Sci. Eng., 2022, 1244, p 012012. https://doi.org/10.1088/1757-899X/1244/1/012012

    Article  Google Scholar 

  11. V.V. Cay, S. Ozan, and M.S. Go, The Effect of Hydrogen Shielding Gas on Microstructure and Abrasive Wear Behavior in the Surface Modification Process Using the Tungsten Inert Gas Method, J. Coatings Technol. Res., 2011, 8, p 97–105. https://doi.org/10.1007/s11998-010-9263-4

    Article  CAS  Google Scholar 

  12. C.K. Sahoo and M. Masanta, Microstructure and Mechanical Properties of TiC-Ni Coating on AISI304 Steel Produced by TIG Cladding Process, J. Mater. Process. Tech., 2017, 240, p 126–137. https://doi.org/10.1016/j.jmatprotec.2016.09.018

    Article  CAS  Google Scholar 

  13. A. Contin, G. De Vasconcelos, D. Maciel, R. Alves, V.J. Trava-airoldi, and E. José, Laser Cladding of SiC Multilayers for Diamond Deposition on Steel Substrates, Diam. Relat. Mater., 2016, 65, p 105–114. https://doi.org/10.1016/j.diamond.2016.02.007

    Article  CAS  Google Scholar 

  14. M. Sabzi, S.M. Dezfuli, and M. Far, Deposition of Ni-Tungsten Carbide Nanocomposite Coating by TIG Welding: Characterization and Control of Microstructure and Wear/Corrosion Responses, Ceram. Int., 2018 https://doi.org/10.1016/j.ceramint.2018.09.073

    Article  Google Scholar 

  15. I. Kováč, R. Mikuš, J. Žarnovský, R. Drlička, M. Harničárová, J. Valíček, and M. Kadnár, Increasing the Wear Resistance of Surface Layers of Selected Steels by TIG Electric arc Surface Remelting Process Using a Powder Based, Int. J. Adv. Manuf. Technol., 2022 https://doi.org/10.1007/s00170-022-10316-x

    Article  Google Scholar 

  16. M. Tavoosi, S. Arjmand, and B. Adelimoghaddam, Surface Alloying of Commercially Pure Titanium with Aluminum and Nitrogen Using, Surf. Coat. Technol., 2016 https://doi.org/10.1016/j.surfcoat.2016.12.115

    Article  Google Scholar 

  17. H. Sahasrabudhe, J. Soderlind, and A. Bandyopadhyay, Laser Processing of in situ TiN/Ti Composite Coating on Titanium, J. Mech. Behav. Biomed. Mater., 2015 https://doi.org/10.1016/j.jmbbm.2015.08.013

    Article  PubMed  Google Scholar 

  18. Q. An, L. Huang, S. Jiang, X. Li, Y. Gao, Y. Liu, and L. Geng, Microstructure Evolution and Mechanical Properties of TIG Cladded TiB Reinforced Composite Coating on Ti-6Al-4V alloy, Vacuum, 2017 https://doi.org/10.1016/j.vacuum.2017.09.019

    Article  Google Scholar 

  19. S.M.H. Hojjatzadeh, A. Halvaee, and M.H. Sohi, Surface Alloying of AISI 1045 Steel in a Nitrogen Environment Using a Gas Tungsten Arc Process, J. Mater. Process. Technol., 2012, 212, p 2496–2504. https://doi.org/10.1016/j.jmatprotec.2012.06.006

    Article  CAS  Google Scholar 

  20. M. Krishnakumar and R. Saravanan, Impact of Tungsten on Microstructure, Hardness and Wear Rate of AISI 304 Stainless Steel Surface Alloyed Under Nitrogen Environment, Express, Mater. Res, 2019.

    Book  Google Scholar 

  21. S.A. Rizvi and T.I. Khan, Investigating the Change in Wear Behaviour of a Tool Steel After Surface Melting and Gaseous Alloying, Tribol. Int., 2000, 32, p 567–574.

    Article  Google Scholar 

  22. S. Mridha and T.N. Baker, Effect of Shielding Gas on the Properties and Microstructure of Melted Steel Surface Using a TIG Torch, Adv. Mater. Process. Technol., 2016 https://doi.org/10.1080/2374068X.2015.1133789

    Article  Google Scholar 

  23. R. Kshirsagar, S. Jones, J. Lawrence, and J. Kanfoud, Effect of the Addition of Nitrogen Through Shielding Gas on TIG Welds Made Homogenously and Heterogeneously on 300 Series Austenitic Stainless Steels, J. Manuf. Mater. Process., 2021 https://doi.org/10.3390/jmmp5030072

    Article  Google Scholar 

  24. B. Zorc, Automatic TIG Welding of Austenitic Stainless Steels in Nitrogen and Nitrogen-Based Gas Mixtures, Rev. Metal., 2011, 47, p 29–37. https://doi.org/10.3989/revmetalmadrid.0962

    Article  CAS  Google Scholar 

  25. S. Dyuti, S. Mridha and S.K. Shaha, Wear Behavior of Modified Surface Layer Produced by TIG Melting of Preplaced Ti Powder in Nitrogen Environment, Adv. Mater. Res., 2011, 264–265, p 1427–1432. https://doi.org/10.4028/www.scientific.net/AMR.264-265.1427

    Article  CAS  Google Scholar 

  26. G.-95 ASTM, Standard Test Method for Wear Testing with a Pin-onDisk Apparatus, Annual Book of Standards, 2000

  27. S. Lu, W. Dong, D. Li, and Y. Li, Numerical Study and Comparisons of Gas Tungsten Arc Properties Between Argon and Nitrogen, Comput. Mater. Sci., 2009, 45, p 327–335. https://doi.org/10.1016/j.commatsci.2008.10.010

    Article  CAS  Google Scholar 

  28. H. Huang, Effects of Shielding Gas Composition and Activating Flux on GTAW Weldments, Mater. Des., 2009, 30, p 2404–2409. https://doi.org/10.1016/j.matdes.2008.10.024

    Article  CAS  Google Scholar 

  29. T. Tsuchiyama, H. Ito, K. Kataoka, and S. Takaki, Fabrication of Ultrahigh Nitrogen Austenitic Steels by Nitrogen Gas Absorption into Solid Solution, Metall. Mater. Trans. A, 2003, 34, p 2591–2599.

    Article  Google Scholar 

  30. Y. Zou and X. Zhou, Effects of Nitrogen-Added Double Shielding Gas and Solution Treatment on Duplex Stainless Steel Weld Microstructure of Deep-Penetration Tungsten Inert Gas Welding, J. Mater. Eng. Perform., 2022 https://doi.org/10.1007/s11665-022-07594-7

    Article  Google Scholar 

  31. S. Balbande, N.K. Paraye, and S. Das, Surface Modification of Steel via In Situ Formed Tantalum Carbide Through TIG Arcing, Metall. Mater. Trans. A, 2023, 54, p 1–5. https://doi.org/10.1007/s11661-022-06850-8

    Article  CAS  Google Scholar 

  32. R. Zheng, N. Li, and Z. Zhan, Friction and Wear Behavior of Cu-La 2 O 3 Composite Sliding Against 52100 Bearing Steel in Vacuum, Vacuum, 2019, 161, p 55–62. https://doi.org/10.1016/j.vacuum.2018.12.019

    Article  CAS  Google Scholar 

  33. R. Yazdi, H. Ghasemi, M. Abedini, C. Wang, and A. Neville, Mechanism of Tribofilm Formation on Ti6Al4V Oxygen Diffusion Layer in a Simulated Body Fluid, J. Mech. Behav. Biomed. Mater., 2017 https://doi.org/10.1016/j.jmbbm.2017.10.020

    Article  PubMed  Google Scholar 

  34. J. Pulsford, F. Venturi, Z. Pala, S. Kamnis, and T. Hussain, Application of HVOF WC-Co-Cr Coatings on the Internal Surface of Small Cylinders: Effect of Internal Diameter on the Wear Resistance, Wear, 2019, 432–433, p 202965. https://doi.org/10.1016/j.wear.2019.202965

    Article  CAS  Google Scholar 

  35. X. Luo, G.M. Smith, Y. Wang, E. Gildersleeve, and S. Sampath, Cracking Induced Tribological Behavior Changes for the HVOF WC-12Co Cermet Coatings, Ceram. Int., 2018 https://doi.org/10.1016/j.ceramint.2018.11.164

    Article  Google Scholar 

  36. K. Jerin, J. Pancrecious, J. Varanya, B. Pai, and T. Rajan, Nanoceria Induced Grain Refinement in Electroless Ni-B-CeO2 Composite Coating for Enhanced Wear and Corrosion Resistance of Aluminium Alloy, Surf. Coat. Technol., 2018 https://doi.org/10.1016/j.surfcoat.2018.09.046

    Article  Google Scholar 

  37. L. Jin, H. Scheerer, G. Andersohn, M. Oechsner, and D. Hellmann, Experimental Study on the Tribo-Chemical Smoothening Process Between Self-Mated Silicon Carbide in a Water-Lubricated Surface- Contact Reciprocating Test, Friction, 2019, 7, p 181–191.

    Article  CAS  Google Scholar 

  38. G. Sun, Y. Zhang, C. Liu, K. Luo, X. Tao, and P. Li, Microstructure and Wear Resistance Enhancement of Cast Steel Rolls by Laser Surface Alloying NiCr—Cr3C2, Mater. Des., 2010, 31, p 2737–2744. https://doi.org/10.1016/j.matdes.2010.01.021

    Article  CAS  Google Scholar 

  39. G. Khosravi, M. Heydarzadeh, H. Ghasemi, and N. Jalalian, Tribology in Industry Study of the Tribological Properties of Diffusion Coated NiTi Intermetallic on Cp Titanium, Tribol. Ind., 2022, 44, p 632–640. https://doi.org/10.24874/ti.1326.07.22.09

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Heydarzadeh Sohi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hejazian, P., Heydarzadeh Sohi, M., Ghasemi, H. et al. Tribological Properties of Surface Alloyed AISI 1045 Steel with Titanium in a Nitrogen Containing Atmosphere. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09498-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09498-0

Keywords

Navigation