Skip to main content
Log in

Improvement of Mechanical Properties of β-AlSiFe Phase by Doping Transition Metals (M = Cr, Mn, V, Ti, and Zr): A First-Principles Study

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

To enhance and modulate the mechanical properties of the β-AlSiFe (Al9Si2Fe2) phase, we conducted first-principles calculations to investigate the impact of transition metal (M = Cr, Mn, V, Ti, and Zr) doping on the structural stability and mechanical characteristics of the β-AlSiFe phase. The results reveal a transformation in the crystal system from monoclinic to triclinic after M doping. Specifically, Ti-Al-4 (− 0.309 eV) and Zr-Al-6 (− 0.305 eV) exhibit a lower enthalpy of formation compared to pure AlSiFe (− 0.304 eV), indicating their preferential formation over pure AlSiFe. In terms of mechanical properties, the Pugh’s ratio of Zr-Al-6 phase (1.413) demonstrates superior toughness compared to the pure AlSiFe phase (1.352). Moreover, Zr doping inhibits the fracture behavior of the tensile phase, leading to a remarkable 40% increase in strain compared to the pure AlSiFe phase. It is important to note that Zr doping minimally influences orbital hybridization, which is the primary reason for the observed improvement in toughness. This study provides valuable insights for enhancing the ductility of the β-AlSiFe phase and improving the mechanical properties of Al-Si alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X. Yuan, X. Liu, and J. Zuo, The development of new energy vehicles for a sustainable future: A review, Renew. Sust. Energ. Rev., 2015, 42, p 298–305.

    Article  Google Scholar 

  2. W. Zhang and J. Xu, Advanced lightweight materials for Automobiles: A review, Mater. Design, 2022, 221, 110994.

    Article  CAS  Google Scholar 

  3. G.D. Niu, Y. Wang, L.J. Zhu, J.W. Ye, and J. Mao, Fluidity of casting Al–Si series alloys for automotive light-weighting: A systematic review, Mater. Sci. Tech-Lond, 2022, 38(13), p 902–911.

    Article  CAS  Google Scholar 

  4. Y. Osawa, S. Takamori, T. Kimura, K. Minagawa, and H. Kakisawa, Morphology of intermetallic compounds in Al-Si-Fe alloy and its control by ultrasonic vibration, Mater. Trans., 2007, 48(9), p 2467–2475.

    Article  CAS  Google Scholar 

  5. Y.B. Zhang, J.C. Jie, Y. Gao, Y.P. Lu, and T.J. Li, Effects of ultrasonic treatment on the formation of iron-containing intermetallic compounds in Al-12% Si-2% Fe alloys, Intermetallics, 2013, 42, p 120–125.

    Article  Google Scholar 

  6. J.A. Taylor, Iron-containing intermetallic phases in Al-Si based casting alloys, Proc. Mater. Sci., 2012, 1, p 19–33.

    Article  CAS  Google Scholar 

  7. Y.M. Chen, L.Z. Wang, Z.X. Feng, and W.N. Zhang, Effects of heat treatment on microstructure and mechanical properties of SLMed Sc-modified AlSi10Mg alloy, Prog. Nat. Sci., 2021, 31(5), p 714–721.

    Article  CAS  Google Scholar 

  8. L.G. Hou, H. Cui, Y.H. Cai, and J.S. Zhang, Effect of (Mn+ Cr) addition on the microstructure and thermal stability of spray-formed hypereutectic Al–Si alloys, Mater. Sci. Eng. A, 2009, 527(1–2), p 85–92.

    Article  Google Scholar 

  9. K.E. Knipling. (2006) Development of a nanoscale precipitation-strengthened creep-resistant aluminum alloy containing trialuminide precipitates(Ref D). Northwestern University

  10. M. Bulanova, L. Tretyachenko, M. Golovkova, and K. Meleshevich, Phase equilibria in the α-Ti-Al-Si region of the Ti-Si-Al system, J. Phase Equilib. Diff., 2004, 25, p 209–229.

    Article  CAS  Google Scholar 

  11. S.K. Shaha, F. Czerwinski, W. Kasprzak, J. Friedman, and D.L. Chen, Monotonic and cyclic deformation behavior of the Al–Si–Cu–Mg cast alloy with micro-additions of Ti, V and Zr, Int. J. Fatigue, 2015, 70, p 383–394.

    Article  CAS  Google Scholar 

  12. S.K. Shaha, F. Czerwinski, W. Kasprzak, J. Friedman, and D.L. Chen, Effect of Cr, Ti, V, and Zr micro-additions on microstructure and mechanical properties of the Al-Si-Cu-Mg cast alloy, Metall. Mater. Trans. A, 2016, 47, p 2396–2409.

    Article  CAS  Google Scholar 

  13. W.D. Han, Y.H. Li, X.D. Li, J. Dai, and K. Li, Doping and adsorption mechanism of modifying the eutectic Mg2Si phase in magnesium alloys with rare earth elements: A first-principles study, Appl. Surf. Sci., 2020, 503, 144331.

    Article  CAS  Google Scholar 

  14. A. Kumar, A. Chernatynskiy, M. Hong, S.R. Phillpot, and S.B. Sinnott, An ab initio investigation of the effect of alloying elements on the elastic properties and magnetic behavior of Ni3Al, Comp. Mater. Sci., 2015, 101, p 39–46.

    Article  CAS  Google Scholar 

  15. J. Hafner, Ab-initio simulations of materials using VASP: Density-functional theory and beyond, J. Comput. Chem., 2008, 29(13), p 2044–2078.

    Article  CAS  PubMed  Google Scholar 

  16. P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B, 1994, 50, p 17953.

    Article  Google Scholar 

  17. J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 1996, 77, p 3865.

    Article  CAS  PubMed  Google Scholar 

  18. Y.Z. Wang, P. Wisesa, A. Balasubramanian, S. Dwaraknath, and T. Mueller, Rapid generation of optimal generalized Monkhorst-Pack grids, Comp. Mater. Sci., 2021, 187, 110100.

    Article  CAS  Google Scholar 

  19. C. Qi, X. Xu, and Q. Chen, Hydration reactivity difference between dicalcium silicate and tricalcium silicate revealed from structural and Bader charge analysis, Int. J. Met. Mater., 2022, 29, p 335–344.

    Article  CAS  Google Scholar 

  20. Z.J. Wu, E.J. Zhao, H.P. Xiang, X.F. Hao, X.J. Liu, and J. Meng, Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles, Phys. Rev. B, 2007, 76, 054115.

    Article  Google Scholar 

  21. H. Qin, B.L. Yan, M. Zhong, C.L. Jiang, F.S. Liu, B. Tang, and Q.J. Liu, First-principles study of structural, elastic, and electronic properties of triclinic TATB under different pressures, Physica B, 2019, 552, p 151–158.

    Article  CAS  Google Scholar 

  22. Y.Y. Zhang, M.J. Wang, C.R. Chang, K.Z. Xu, H.X. Ma, and F.Q. Zhao, A DFT study on the enthalpies of thermite reactions and enthalpies of formation of metal composite oxide, Chem. Phys., 2018, 507, p 19–27.

    Article  CAS  Google Scholar 

  23. F. Mouhat and F.X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems, Phys. Rev. B, 2014, 90, 224104.

    Article  Google Scholar 

  24. M. Usman, J.U. Rehman, and M.B. Tahir, Screening of ABF3 fluoroperovskites by using first-principles calculations, Solid State Commun., 2023, 369, 115198.

    Article  CAS  Google Scholar 

  25. X.Q. Chen, H.Y. Niu, D.Z. Li, and Y.Y. Li, Modeling hardness of polycrystalline materials and bulk metallic glasses, Intermetallics, 2011, 19, p 1275–1281.

    Article  CAS  Google Scholar 

  26. D. Jang, M.E. Lee, J. Choi, S.Y. Cho, and S. Lee, Strategies for the production of PAN-Based carbon fibers with high tensile strength, Carbon, 2022, 186, p 644–677.

    Article  CAS  Google Scholar 

  27. D.K. Singh, S. Kadge, Y. Bang, and P. Majumdar, Fermi arcs and pseudogap phase in a minimal microscopic model of d-wave superconductivity, Phys. Rev. B, 2022, 105, 054501.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Yunnan Major Scientific and Technological Projects (grant no. 202202AG050011); National Natural Science Foundation of China (52065032); Key Research and Development Project of Yunnan Province and International Science and Technology Cooperation Project (202103AF140004); Basic research project of Yunnan Province (202101AT070123); Science Foundation of Kunming University of Science and Technology (202202AG050011-2); and Ten Thousand Talent Program of Yunnan Province (YNWR-QNBJ-2019-106).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhentao Yuan or Lu Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 24 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Yuan, Z., Zhan, Y. et al. Improvement of Mechanical Properties of β-AlSiFe Phase by Doping Transition Metals (M = Cr, Mn, V, Ti, and Zr): A First-Principles Study. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09494-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09494-4

Keywords

Navigation