Skip to main content
Log in

Microstructure and Properties of Laser Surface Melted AISI 316L Stainless Steel

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The present study aims to understand the influence of laser parameters (applied power density and scan speed) on microstructure, surface mechanical (microhardness and wear resistance), and electrochemical (corrosion resistance) properties of AISI 316L stainless steel following laser surface melting (LSM), conducted using a 6.6 kW continuous wave diode laser with the applied power density and scan speed ranging from 58.98 to 88.46 W/mm2 and 20 to 80 mm/s, respectively. Detailed characterization included microstructure investigation, composition analysis, phase determination, and assessment of wear and corrosion resistance. The melt zone microstructure mainly comprises dendrites with the secondary arm spacing systematically varying with laser parameters. With increase in laser power density, cumulative lattice strain, dislocation density, and residual stress increased. The relationship between these properties and scan speed is just the opposite. Microhardness of the melt zone varied between 180 and 336 VHN, with higher values obtained either at higher laser power density or lower scan speed. Similarly, wear volume and wear rate after LSM also vary with the laser parameters. Detailed microstructural analysis of the worn surface was carried out to study the mechanism of wear. Interestingly, LSM recorded a corrosion resistance better than that in as-received conditions which systematically varies with the LSM parameters. Orientation imaging by electron backscattered diffraction analysis suggested that LSM with 88.46 W/mm2 power density and 20 mm/s scan speed developed a lower area fraction of high-angle grain boundaries and orientation mismatch and, hence, offered highest corrosion resistance in a 3.56 wt.% NaCl solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. U.I. Thomann and P.J. Uggowitzer, Wear-Corrosion Behavior of Biocompatible Austenitic Stainless Steels, Wear, 2000, 239(1), p 48–58.

    Article  CAS  Google Scholar 

  2. D. Kuroda, S. Hiromoto, T. Hanawa, and Y. Katada, Corrosion Behavior of Nickel-Free High Nitrogen Austenitic Stainless Steel in Simulated Biological Environments, Mater. Trans., 2002, 43(12), p 3100–3104.

    Article  CAS  Google Scholar 

  3. M.G. Fontana, N.D. Greene, and J. Klerer, Corrosion Engineering, J. Electrochem. Soc., 1968, 115(5), p 142C. https://doi.org/10.1149/1.2411256

    Article  Google Scholar 

  4. K.G. Budinski, Surface Engineering for Wear Resistance (Retroactive Coverage), Prentice-Hall, Inc, Englewood Cliffs, 1988, p 420

    Google Scholar 

  5. J. Dutta Majumdar and I. Manna, Laser Material Processing, Int. Mater. Rev., 2011, 56(5–6), p 341–388.

    Article  CAS  Google Scholar 

  6. S. Jannat, H. Rashtchi, M. Atapour, M.A. Golozar, H. Elmkhah, and M. Zhiani, Preparation and Performance of Nanometric Ti/TiN Multi-Layer Physical Vapor Deposited Coating on 316L Stainless Steel as Bipolar Plate for Proton Exchange Membrane Fuel Cells, J. Power Sources, 2019, 435, p 226818.

    Article  CAS  Google Scholar 

  7. T. Rajabi, M. Atapour, H. Elmkhah, and S.M. Nahvi, Nanometric CrN/CrAlN and CrN/ZrN Multilayer Physical Vapor Deposited Coatings on 316L Stainless Steel as Bipolar Plate for Proton Exchange Membrane Fuel Cells, Thin Solid Films, 2022, 753, p 139288.

    Article  CAS  Google Scholar 

  8. N. Ali, J.A. Teixeira, A. Addali, M. Saeed, F. Al-Zubi, A. Sedaghat, and H. Bahzad, Supplementary Materials: Deposition of Stainless Steel Thin Films: An Electron Beam Physical Vapour Deposition Approach, Materials (Basel), 2019, 12, p 571. https://doi.org/10.3390/ma12040571

    Article  CAS  PubMed  Google Scholar 

  9. W. Zhu, Z. Su, J. Guo, K. Li, K. Chen, W. Li, A. Yi, Z. Liao, Y. Luo, Y. Hu, Y. Xu, Q. Lin, and X. Meng, Preparation and Characterization of Diamond-like Carbon (DLC) Film on 316L Stainless Steel by Microwave Plasma Chemical Vapor Deposition (MPCVD), Diam. Relat. Mater., 2022, 122, p 108820.

    Article  CAS  Google Scholar 

  10. M. Sabzi, S.H. Mousavi Anijdan, and M. Asadian, The Effect of Substrate Temperature on Microstructural Evolution and Hardenability of Tungsten Carbide Coating in Hot Filament Chemical Vapor Deposition, Int. J. Appl. Ceram. Technol., 2018, 15(6), p 1350–1357. https://doi.org/10.1111/IJAC.12905

    Article  CAS  Google Scholar 

  11. M.H. Staia, B. Lewis, J. Cawley, and T. Hudson, Chemical Vapour Deposition of TiN on Stainless Steel, Surf. Coat. Technol., 1995, 76–77, p 231–236.

    Article  Google Scholar 

  12. E. García, J.F. Louvier-Hernández, G. Mendoza-Leal, M. Flores-Martínez and C. Hernández-Navarro, Tribological Study of HAp/CTS Coatings Produced by Electrodeposition Process on 316L Stainless Steel, Mater. Lett., 2020, 277, p 128336.

    Article  Google Scholar 

  13. L. Xu, Y. Zuo, J. Tang, Y. Tang, and P. Ju, Chromium-Palladium Films on 316L Stainless Steel by Pulse Electrodeposition and Their Corrosion Resistance in Hot Sulfuric Acid Solutions, Corros. Sci., 2011, 53(11), p 3788–3795.

    Article  CAS  Google Scholar 

  14. F. Laroudie, C. Tassin, and M. Pons, Hardening of 316L Stainless Steel by Laser Surface Alloying, J. Mater. Sci., 1995, 30(14), p 3652–3657. https://doi.org/10.1007/BF00351880/METRICS

    Article  CAS  Google Scholar 

  15. E.S. Ghaith, S. Hodgson, and M. Sharp, Laser Surface Alloying of 316L Stainless Steel Coated with a Bioactive Hydroxyapatite-Titanium Oxide Composite, J. Mater. Sci. Mater. Med., 2015, 26(2), p 1–8. https://doi.org/10.1007/S10856-015-5399-1/FIGURES/8

    Article  CAS  Google Scholar 

  16. J. Dutta Majumdar, A. Weisheit, B.L. Mordike, and I. Manna, Laser Surface Alloying of Ti with Si, Al and Si+Al for an Improved Oxidation Resistance, Mater. Sci. Eng. A, 1999, 266(1–2), p 123–134.

    Article  Google Scholar 

  17. M. Cabeza, G. Castro, P. Merino, G. Pena, and M. Román, Laser Surface Melting: A Suitable Technique to Repair Damaged Surfaces Made in 14 Ni (200 Grade) Maraging Steel, Surf. Coatings Technol., 2012, 212, p 159–168.

    Article  CAS  Google Scholar 

  18. N.B. Dahotre, Laser Material Processing by W.M. Steen Springer-Verlag, London, England 206 Pages, Soft Cover, 1991, Mater. Manuf. Process., 1993, 8(3), p 399–400. https://doi.org/10.1080/10426919308934845

    Article  Google Scholar 

  19. J. Dutta Majumdar, R. Galun, B.L. Mordike, and I. Manna, Effect of Laser Surface Melting on Corrosion and Wear Resistance of a Commercial Magnesium Alloy, Mater. Sci. Eng. A, 2003, 361, p 119–129. https://doi.org/10.1016/S0921-5093(03)00519-7

    Article  CAS  Google Scholar 

  20. J. Dutta Majumdar, A.K. Nath, and I. Manna, Studies on Laser Surface Melting of Tool Steel—Part II: Mechanical Properties of the Surface, Surf. Coatings Technol., 2010, 204(9–10), p 1326–1329. https://doi.org/10.1016/j.surfcoat.2009.08.012

    Article  CAS  Google Scholar 

  21. C.T. Kwok, H.C. Man, and F.T. Cheng, Laser Surface Melting of Tool Steels H13, O1 and D6, in 26th International Congress on Applications of Lasers Electro-Optics, ICALEO 2007—Congress Proceedings, vol. 523 (2007). https://doi.org/10.2351/1.5061197.

  22. K.A. Qureshi, N. Hussain, J.I. Akhter, N. Khan, and A. Hussain, Surface Modification of Low Alloy Steel by Laser Melting, Mater. Lett., 2005, 59(6), p 719–722. https://doi.org/10.1016/j.matlet.2004.08.040

    Article  CAS  Google Scholar 

  23. M. Paczkowska, The Evaluation of the Influence of Laser Treatment Parameters on the Type of Thermal Effects in the Surface Layer Microstructure of Gray Irons, Opt. Laser Technol., 2016, 76, p 143–148. https://doi.org/10.1016/j.optlastec.2015.07.016

    Article  CAS  Google Scholar 

  24. M. Li, Y. Wang, B. Han, W. Zhao, and T. Han, Microstructure and Properties of High Chrome Steel Roller after Laser Surface Melting, Appl. Surf. Sci., 2009, 255(17), p 7574–7579. https://doi.org/10.1016/j.apsusc.2009.04.030

    Article  CAS  Google Scholar 

  25. C.T. Kwok, F.T. Cheng, and H.C. Man, Microstructure and Corrosion Behavior of Laser Surface-Melted High-Speed Steels, Surf. Coatings Technol., 2007, 202(2), p 336–348. https://doi.org/10.1016/j.surfcoat.2007.05.085

    Article  CAS  Google Scholar 

  26. Z. Liu, P.H. Chong, P. Skeldon, P.A. Hilton, J.T. Spencer, and B. Quayle, Fundamental Understanding of the Corrosion Performance of Laser-Melted Metallic Alloys, Surf. Coatings Technol., 2006, 200(18–19), p 5514–5525. https://doi.org/10.1016/j.surfcoat.2005.07.108

    Article  CAS  Google Scholar 

  27. Z. Liu, P.H. Chong, A.N. Butt, P. Skeldon, and G.E. Thompson, Corrosion Mechanism of Laser-Melted AA 2014 and AA 2024 Alloys, Appl. Surf. Sci., 2005, 247(1–4), p 294–299. https://doi.org/10.1016/j.apsusc.2005.01.067

    Article  CAS  Google Scholar 

  28. H.C. Man, Z.D. Cui, and T.M. Yue, Corrosion Properties of Laser Surface Melted NiTi Shape Memory Alloy, Scr. Mater., 2001, 45(12), p 1447–1453. https://doi.org/10.1016/S1359-6462(01)01182-4

    Article  CAS  Google Scholar 

  29. C.Y. Cui, Y.X. Shu, X.G. Cui, and J.D. Hu, Microstructure Evolution and Wear Behavior of AISI 304 Stainless Steel after Nd:YAG Pulsed Laser Surface Melting, Appl. Opt., 2020, 59(34), p 10862.

    Article  CAS  PubMed  Google Scholar 

  30. S. Jafar, M. Kadhim, and S. Faayadh, Effect of Laser Surface Melting on Chromium Carbide of 304 Stainless Steels, Eng. Technol. J., 2018, 36(3A), p 344–349.

    Article  Google Scholar 

  31. A. Mahanti Ghosal, R.K. Gupta, K. Chandra, V. Bhardwaj, B.N. Upadhyaya, P. Ganesh, R. Kaul, and V. Kain, Laser Surface Melting of 304L SS: Increase in Resistance to Transpassive Dissolution and Pitting Corrosion, Corros. Eng. Sci. Technol., 2023, 58(5), p 508–520. https://doi.org/10.1080/1478422X.2023.2212466

    Article  CAS  Google Scholar 

  32. O.V. Akgun and O.T. Inal, Laser Surface Melting and Alloying of Type 304 L Stainless Steel Part I Microstructural Characterization, J. Mater. Sci., 1995, 30, p 6097–6104.

    Article  CAS  Google Scholar 

  33. N. Parvathavarthini, R.V. Subbarao, S. Kumar, R.K. Dayal, and H.S. Khatak, Elimination of Intergranular Corrosion Susceptibility of Cold-Worked and Sensitized AISI 316 SS by Laser Surface Melting, J. Mater. Eng. Perform., 2001, 10(1), p 5–13.

    Article  CAS  Google Scholar 

  34. C.T. Kwok, H.C. Man, and F.T. Cheng, Cavitation Erosion and Pitting Corrosion of Laser Surface Melted Stainless Steels, Surf. Coat. Technol., 1998, 99(3), p 295–304.

    Article  CAS  Google Scholar 

  35. J. Ghorbani, J. Li, and A.K. Srivastava, Application of Optimized Laser Surface Re-melting Process on Selective Laser Melted 316L Stainless Steel Inclined Parts, J. Manuf. Process., 2020, 56, p 726–734.

    Article  Google Scholar 

  36. F. Vilchez, F. Pineda, M. Walczak, and J. Ramos-Grez, The Effect of Laser Surface Melting of Stainless Steel Grade AISI 316L Welded Joint on Its Corrosion Performance in Molten Solar Salt, Sol. Energy Mater. Sol. Cells, 2020, 213(November 2019), p 110576. https://doi.org/10.1016/j.solmat.2020.110576

    Article  CAS  Google Scholar 

  37. V.K. Balla, S. Dey, A.A. Muthuchamy, G.D. JanakiRam, M. Das, and A. Bandyopadhyay, Laser Surface Modification of 316L Stainless Steel, J. Biomed. Mater. Res. Part B Appl. Biomater., 2018, 106, p 569–577. https://doi.org/10.1002/jbm.b.33872

    Article  CAS  Google Scholar 

  38. A. Kumar, S.K. Roy, S. Pityana, and J. Dutta Majumdar, Surface Characterization and Wear Behavior of Laser Surface Melted AISI 316L Stainless Steel, Lasers Eng., 2012, 24, p 147.

    Google Scholar 

  39. J.D. Majumdar, A. Kumar, S. Pityana, and I. Manna, Laser Surface Melting of AISI 316L Stainless Steel for Bio-Implant Application, Proc. Natl. Acad. Sci. India Sect. A Phys. Sci., 2018, 88(3), p 387–403. https://doi.org/10.1007/S40010-018-0524-4/FIGURES/24

    Article  CAS  Google Scholar 

  40. C.T. Kwok, K.H. Lo, F.T. Cheng, and H.C. Man, Effect of Processing Conditions on the Corrosion Performance of Laser Surface-Melted AISI 440C Martensic Stainless Steel, Surf. Coat. Technol., 2003, 166(2–3), p 221–230. https://doi.org/10.1016/S0257-8972(02)00782-X

    Article  CAS  Google Scholar 

  41. C.T. Kwok, K.H. Lo, W.K. Chan, F.T. Cheng, and H.C. Man, Effect of Laser Surface Melting on Intergranular Corrosion Behaviour of Aged Austenitic and Duplex Stainless Steels, Corros. Sci., 2011, 53(4), p 1581–1591. https://doi.org/10.1016/j.corsci.2011.01.048

    Article  CAS  Google Scholar 

  42. A. Ebrahimi, M. Sattari, A. Babu, A. Sood, G.W.R.B.E. Römer, and M.J.M. Hermans, Revealing the Effects of Laser Beam Shaping on Melt Pool Behaviour in Conduction-Mode Laser Melting, J. Mater. Res. Technol., 2023, 27(November), p 3955–3967. https://doi.org/10.1016/j.jmrt.2023.11.046

    Article  CAS  Google Scholar 

  43. L. Han and F.W. Liou, Numerical Investigation of the Influence of Laser Beam Mode on Melt Pool, Int. J. Heat Mass Transf., 2004, 47(19–20), p 4385–4402.

    Article  Google Scholar 

  44. A. Aggarwal, S. Patel, and A. Kumar, Selective Laser Melting of 316L Stainless Steel: Physics of Melting Mode Transition and Its Influence on Microstructural and Mechanical Behavior, JOM Miner. Met. Mater. Soc., 2019, 71(3), p 1105–1116. https://doi.org/10.1007/S11837-018-3271-8/TABLES/2

    Article  CAS  Google Scholar 

  45. J. Wu, C. Zhang, P. Jiang, C. Li, H. Cao, and S. Shi, A Prediction Approach of Fiber Laser Surface Treatment Using Ensemble of Metamodels Considering Energy Consumption and Processing Quality, Green Manuf. Open, 2022, 1(1), p 3. https://doi.org/10.20517/GMO.2022.04

    Article  Google Scholar 

  46. S. Mishra, K. Narasimhan, and I. Samajdar, Deformation Twinning in AISI 316L Austenitic Stainless Steel: Role of Strain and Strain Path, Mater. Sci. Technol., 2007, 23(9), p 1118–1126. https://doi.org/10.1179/174328407X213242

    Article  CAS  Google Scholar 

  47. C. Carboni, P. Peyre, G. Béranger, and C. Lemaitre, Influence of High Power Diode Laser Surface Melting on the Pitting Corrosion Resistance of Type 316L Stainless Steel, J. Mater. Sci., 2002, 37(17), p 3715–3723. https://doi.org/10.1023/A:1016569527098/METRICS

    Article  CAS  Google Scholar 

  48. R.K. Rajan, S. Bontha, M.R. Ramesh, M. Das, and V.K. Balla, Laser Surface Melting of Mg-Zn-Dy Alloy for Better Wettability and Corrosion Resistance for Biodegradable Implant Applications, Appl. Surf. Sci., 2019, 480(18), p 70–82. https://doi.org/10.1016/j.apsusc.2019.02.167

    Article  CAS  Google Scholar 

  49. J.D. Hunt, Steady State Columnar and Equiaxed Growth of Dendrites and Eutectic, Mater. Sci. Eng., 1984, 65(1), p 75–83. https://doi.org/10.1016/0025-5416(84)90201-5

    Article  CAS  Google Scholar 

  50. M.A. Martorano, C. Beckermann, and C.-A. Gandin, A Solutal Interaction Mechanism for the Columnar-to-Equiaxed Transition in Alloy Solidification, Metall. Mater. Trans. A, 2003, 34(8), p 1657–1674. https://doi.org/10.1007/s11661-003-0311-x

    Article  Google Scholar 

  51. S. Anandan, S. Pityana, and J. Dutta Majumdar, Structure-Property-Correlation in Laser Surface Alloyed AISI 304 Stainless Steel with WC+Ni+NiCr, Mater. Sci. Eng. A, 2012, 536, p 159–169. https://doi.org/10.1016/j.msea.2011.12.095

    Article  CAS  Google Scholar 

  52. H. Ali, H. Ghadbeigi, and K. Mumtaz, Processing Parameter Effects on Residual Stress and Mechanical Properties of Selective Laser Melted Ti6Al4V, J. Mater. Eng. Perform., 2018, 27(8), p 4059–4068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. H. Savaloni, E. Agha-Taheri, and F. Abdi, On the Corrosion Resistance of AISI 316L-Type Stainless Steel Coated with Manganese and Annealed with Flow of Oxygen, J. Theor. Appl. Phys., 2016, 10(2), p 149–156.

    Article  Google Scholar 

  54. G. Abbas, Z. Liu, and P. Skeldon, Corrosion Behaviour of Laser-Melted Magnesium Alloys, Appl. Surf. Sci., 2005, 247(1), p 347–353. https://doi.org/10.1016/j.apsusc.2005.01.169

    Article  CAS  Google Scholar 

  55. A. Biswas, L. Li, T.K. Maity, U.K. Chatterjee, B.L. Mordike, I. Manna and J. Dutta Majumdar, Laser Surface Treatment of Ti-6Al-4V for Bio-Implant Application, Lasers Eng., 2007, 17(1–2), p 59–73.

    CAS  Google Scholar 

  56. H.-B. Wu, T. Wu, T. Li, R.-Y. Sun, and Y. Gu, Effect of the Frequency of High-Angle Grain Boundaries on the Corrosion Performance of 5 wt.%Cr Steel in a CO2 Aqueous Environment, Int. J. Miner. Metall. Mater., 2018 https://doi.org/10.1007/s12613-018-1575-x

    Article  Google Scholar 

  57. M. Vishnukumar, V. Muthupandi, and S. Jerome, Effect of Post-Heat Treatment on the Mechanical and Corrosion Behaviour of SS316L Fabricated by Wire Arc Additive Manufacturing, Mater. Lett., 2022, 307, p 131015.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I.M. would like to acknowledge partial financial support from DST sponsored Projects ‘JCP’ (SR/S2/JCB-16/2012. Dt.16-10-2017) and ‘DGL’ (DST/TSG/AMT/2015/636/G, Dt.18-06-2018), ISRO sponsored Project ‘ONC’ (IIT/KCSTC/CHAIR/NEW/P/18-19/01, Dt.24-05-2018), Ministry of Education sponsored Project ‘LSL_SKI’ (SPARC/2018-2019/P723/SL, Dt.31-05-2019), Science and Engineering Research Board, N. Delhi (POWER Fellowship, SPF/2021/000073, Dt. 11-03-2021) and Ministry of Human Resource Development (MHRD), Government of India (under IMPRINT-2, sanction letter IMP/2018/001162, Dt. 02-01-2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indranil Manna.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anishetty, S., Bera, T., Karak, S.K. et al. Microstructure and Properties of Laser Surface Melted AISI 316L Stainless Steel. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09461-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09461-z

Keywords

Navigation