Skip to main content
Log in

Effect of Surface Nano Structuring on Corrosion and Tribocorrosion Behavior of Ti6Al4V Alloy in Simulated Body Fluid

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Effect of surface nano crystallisation of Ti6Al4V alloy obtained through ultrasonic shot peening (USP) on its degradation behavior in simulated body fluid is investigated. Optical microscopy, EBSD, micro-hardness, XRD, EIS, XPS, and tribocorrosion studies are done. Grains refined and surface hardness increased after USP that translated into improved tribocorrosion performance. Higher hardness of USP samples led to lower mass loss, lower friction coefficient, and shallower tracks in tribocorrosion tests. Larger capacitive loop in the Nyquist plots for USP samples indicate better dielectric properties of the passive film. Resistance of Ti-6Al-4V alloy to tribocorrosion is significantly enhanced after USP, which is explained based on mechanical and electrochemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. L. Wang, W. Lu, J. Qin, F. Zhang, and D. Zhang, Influence of Cold Deformation on Martensite Transformation and Mechanical Properties of Ti-Nb-Ta-Zr Alloy, J. Alloys Compd., 2009, 469(1–2), p 512–518.

    Article  CAS  Google Scholar 

  2. G. Yang and T. Zhang, Phase Transformation and Mechanical Properties of the Ti50Zr30Nb10Ta10 Alloy with Low Modulus and Biocompatible, J. Alloys Compd., 2005, 392(1–2), p 291–294.

    Article  CAS  Google Scholar 

  3. R. Bailey and Y. Sun, Corrosion and Tribocorrosion Performance of Thermally Oxidized Commercially Pure Titanium in a 0.9% NaCl Solution, J. Mater. Eng. Perform., 2015, 24, p 1669–1678.

    Article  CAS  Google Scholar 

  4. M. Kaur and K. Singh, Review on Titanium and Titanium Based Alloys as Biomaterials for Orthopaedic Applications, Mater. Sci. Eng. C, 2019, 102, p 844–862.

    Article  CAS  Google Scholar 

  5. C. Zhao, X. Zhang, and P. Cao, Mechanical and Electrochemical Characterization of Ti-12Mo-5Zr Alloy for Biomedical Application, J. Alloys Compd., 2011, 509(32), p 8235–8238.

    Article  CAS  Google Scholar 

  6. M.K. Dimah, F.D. Albeza, V.A. Borrás, and A.I. Muñoz, Study of the Biotribocorrosion Behaviour of Titanium Biomedical Alloys in Simulated Body Fluids by Electrochemical Techniques, Wear, 2012, 294, p 409–418.

    Article  Google Scholar 

  7. M. Khan, R. Williams, and D. Williams, In-Vitro Corrosion and Wear of Titanium Alloys in the Biological Environment, Biomaterials, 1996, 17(22), p 2117–2126.

    Article  CAS  PubMed  Google Scholar 

  8. J. Ureña, S. Tsipas, A. Pinto, F. Toptan, E. Gordo, and A. Jiménez-Morales, Corrosion and Tribocorrosion Behaviour of β-Type Ti-Nb and Ti-Mo Surfaces Designed by Diffusion Treatments for Biomedical Applications, Corros. Sci., 2018, 140, p 51–60.

    Article  Google Scholar 

  9. L. Xu, Y. Chen, Z.G. Liu, and F. Kong, The Microstructure and Properties of Ti-Mo-Nb Alloys for Biomedical Application, J. Alloys Compd., 2008, 453(1–2), p 320–324.

    Article  CAS  Google Scholar 

  10. L. Thair, U.K. Mudali, S. Rajagopalan, R. Asokamani, and B. Raj, Surface Characterization of Passive Film Formed on Nitrogen Ion Implanted Ti-6Al-4V and Ti-6Al-7Nb Alloys Using SIMS, Corros. Sci., 2003, 45(9), p 1951–1967.

    Article  CAS  Google Scholar 

  11. A. Molinari, G. Straffelini, B. Tesi, and T. Bacci, Dry Sliding Wear Mechanisms of the Ti6Al4V Alloy, Wear, 1997, 208(1–2), p 105–112.

    Article  CAS  Google Scholar 

  12. M. Long and H. Rack, Titanium Alloys in Total Joint Replacement—A Materials Science Perspective, Biomaterials, 1998, 19(18), p 1621–1639.

    Article  CAS  PubMed  Google Scholar 

  13. L. Huang, X. Xu, Y. Xiao, S. Li, Y. Luo, and J. Wu, High-Temperature Corrosion Resistance of Ti-555 Titanium Alloy After Equal Channel Angular Pressing and Heat Treatment, J. Mater. Eng. Perform., 2023, 32(10), p 4508–4521.

    Article  CAS  Google Scholar 

  14. E.F. DiCarlo and P.G. Bullough, The Biologic Responses to Orthopedic Implants and their Wear Debris, Clin. Mater., 1992, 9(3–4), p 235–260.

    Article  CAS  PubMed  Google Scholar 

  15. A. Nasresfahani, A.R. Soltanipur, K. Farmanesh, and A. Ghasemi, The Effect of Post-Weld Heat Treatment on the Corrosion Behavior of Different Weld Zones of Titanium Ti-6Al-4V Alloy by Friction Stir Welding, J. Mater. Eng. Perform., 2020, 29, p 6784–6789.

    Article  CAS  Google Scholar 

  16. W. Kao, Y. Su, J. Horng, and C. Chang, Tribological, Electrochemical and Biocompatibility Properties of Ti6Al4V Alloy Produced by Selective Laser Melting Method and then Processed Using Gas Nitriding, CN or Ti-C: H Coating Treatments, Surf. Coat. Technol., 2018, 350, p 172–187.

    Article  CAS  Google Scholar 

  17. D. Zhao, F. Witte, F. Lu, J. Wang, J. Li, and L. Qin, Current Status on Clinical Applications of Magnesium-Based Orthopaedic Implants: A Review from Clinical Translational Perspective, Biomaterials, 2017, 112, p 287–302.

    Article  CAS  PubMed  Google Scholar 

  18. L. Ke and L. Jian, Surface Nanocrystallization (SNC) of Metallic Materials-Presentation of the Concept Behind a New Approach, J. Mater. Sci. Technol., 1999, 15(3), p 193–197.

    Google Scholar 

  19. W. Huo, L. Zhao, W. Zhang, J. Lu, Y. Zhao, and Y. Zhang, In Vitro Corrosion Behavior and Biocompatibility of Nanostructured Ti6Al4V, Mater. Sci. Eng. C, 2018, 92, p 268–279.

    Article  CAS  Google Scholar 

  20. A. Amanov, I.-S. Cho, D.-E. Kim, and Y.-S. Pyun, Fretting Wear and Friction Reduction of CP Titanium and Ti-6Al-4V Alloy by Ultrasonic Nanocrystalline Surface Modification, Surf. Coat. Technol., 2012, 207, p 135–142.

    Article  CAS  Google Scholar 

  21. J. Vishnu and G. Manivasagam, High-Surface-Energy Nanostructured Surface on Low-Modulus Beta Titanium Alloy for Orthopedic Implant Applications, J. Mater. Eng. Perform., 2021, 30, p 4370–4379.

    Article  CAS  Google Scholar 

  22. V. Abramov, O. Abramov, F. Sommer, O. Gradov, and O. Smirnov, Surface Hardening of Metals by Ultrasonically Accelerated Small Metal Balls, Ultrasonics, 1998, 36(10), p 1013–1019.

    Article  CAS  Google Scholar 

  23. S. Barril, N. Debaud, S. Mischler, and D. Landolt, A Tribo-electrochemical Apparatus for In Vitro Investigation of Fretting–Corrosion of Metallic Implant Materials, Wear, 2002, 252(9–10), p 744–754.

    Article  CAS  Google Scholar 

  24. P.K. Rai, D. Naidu, S. Vajpai, B. Sharma, K. Ameyama, and K. Mondal, Effect of Cold Rolling and Heat Treatment on Corrosion and Wear Behavior of β-Titanium Ti-25Nb-25Zr Alloy, J. Mater. Eng. Perform., 2021, 30, p 4174–4182.

    Article  CAS  Google Scholar 

  25. É. Martin, M. Azzi, G. Salishchev, and J. Szpunar, Influence of Microstructure and Texture on the Corrosion and Tribocorrosion Behavior of Ti-6Al-4V, Tribol. Int., 2010, 43(5–6), p 918–924.

    Article  CAS  Google Scholar 

  26. C. Anandan and L. Mohan, Effect of Postnitride Annealing on Wear and Corrosion Behavior of Titanium Alloy Ti-6Al-4V, J. Mater. Eng. Perform., 2016, 25, p 4416–4424.

    Article  CAS  Google Scholar 

  27. Y.-L. Zhou and M. Niinomi, Microstructures and Mechanical Properties of Ti-50 Mass% Ta Alloy for Biomedical Applications, J. Alloys Compd., 2008, 466(1–2), p 535–542.

    Article  CAS  Google Scholar 

  28. G. Liu, J. Lu, and K. Lu, Surface Nanocrystallization of 316L Stainless Steel Induced by Ultrasonic Shot Peening, Mater. Sci. Eng. A, 2000, 286(1), p 91–95.

    Article  Google Scholar 

  29. N. Diomidis, J.-P. Celis, P. Ponthiaux, and F. Wenger, Tribocorrosion of Stainless Steel in Sulfuric Acid: Identification of Corrosion–Wear Components and Effect of Contact Area, Wear, 2010, 269(1–2), p 93–103.

    Article  CAS  Google Scholar 

  30. E. Mardare, L. Benea, and J.-P. Celis, Importance of Applied Normal Loads on the Tribocorrosion Behaviour of Ti-6Al-4V Alloy in Bio-simulated Environment, Optoelectron. Adv. Mater., 2012, 6, p 474–478.

    CAS  Google Scholar 

  31. F.B. Saada, Z. Antar, K. Elleuch, and P. Ponthiaux, On the Tribocorrosion Behavior of 304L Stainless Steel in Olive Pomace/Tap Water Filtrate, Wear, 2015, 328, p 509–517.

    Article  Google Scholar 

  32. K. Zhu, A. Vassel, F. Brisset, K. Lu, and J. Lu, Nanostructure Formation Mechanism of α-Titanium Using SMAT, Acta Mater., 2004, 52(14), p 4101–4110.

    Article  CAS  Google Scholar 

  33. A. Popov, I.Y. Pyshmintsev, S. Demakov, A. Illarionov, T. Lowe, A. Sergeyeva, and R. Valiev, Structural and Mechanical Properties of Nanocrystalline Titanium Processed by Severe Plastic Deformation, Scr. Mater., 1997, 37(7), p 1089–1094.

    Article  CAS  Google Scholar 

  34. Y. Liu, M. Li, and H. Liu, Nanostructure and Surface Roughness in the Processed Surface Layer of Ti-6Al-4V Via Shot Peening, Mater. Charact., 2017, 123, p 83–90.

    Article  CAS  Google Scholar 

  35. S.A. Kumar, S.G.S. Raman, T.S. Narayanan, and R. Gnanamoorthy, Influence of Counterbody Material on Fretting Wear Behaviour of Surface Mechanical Attrition Treated Ti-6Al-4V, Tribol. Int., 2013, 57, p 107–114.

    Article  Google Scholar 

  36. S. Gollapudi, Grain Size Distribution Effects on the Corrosion Behaviour of Materials, Corros. Sci., 2012, 62, p 90–94.

    Article  CAS  Google Scholar 

  37. A. Kumar, F. Khan, S.K. Panigrahi, and G.P. Chaudhari, Microstructural Evolution and Corrosion Behaviour of Friction Stir-Processed QE22 Magnesium Alloy, Corros. Rev., 2021, 39(4), p 351–360.

    Article  CAS  Google Scholar 

  38. K. Ralston and N. Birbilis, Effect of Grain Size on Corrosion: A Review, Corrosion, 2010, 66(7), p 075005–075013.

    Article  Google Scholar 

  39. S.V. Muley, A.N. Vidvans, G.P. Chaudhari, and S. Udainiya, An Assessment of Ultra Fine Grained 316L Stainless Steel for Implant Applications, Acta Biomater., 2016, 30, p 408–419.

    Article  CAS  PubMed  Google Scholar 

  40. L. Yuan and H. Wang, Corrosion Behaviors of a γ-Toughened Cr13Ni5Si2/Cr3Ni5Si2 Multi-phase Ternary Metal Silicide Alloy in NaCl Solution, Electrochim. Acta, 2008, 54(2), p 421–429.

    Article  CAS  Google Scholar 

  41. S. Kumar, T.S. Narayanan, S.G.S. Raman, and S. Seshadri, Thermal Oxidation of Ti6Al4V Alloy: Microstructural and Electrochemical Characterization, Mater. Chem. Phys., 2010, 119(1–2), p 337–346.

    Article  CAS  Google Scholar 

  42. C. Jun, Q. Zhang, Q.-A. Li, S.-L. Fu, and J.-Z. Wang, Corrosion and Tribocorrosion Behaviors of AISI 316 Stainless Steel and Ti6Al4V Alloys in Artificial Seawater, Trans. Nonferrous Met. Soc. China, 2014, 24(4), p 1022–1031.

    Article  Google Scholar 

Download references

Acknowledgments

National facility for Texture and Orientation Imaging Microscopy at IIT Bombay under the support from the Department of Science and Technology under the IRPHA scheme is gratefully acknowledged for the EBSD work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Chaudhari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subham, K., Kumar, A., Kamboj, A. et al. Effect of Surface Nano Structuring on Corrosion and Tribocorrosion Behavior of Ti6Al4V Alloy in Simulated Body Fluid. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09458-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09458-8

Keywords

Navigation