Skip to main content
Log in

Preparation and Characterization of Ni60-WC Composites Fabricated Using Laser Cladding Technique

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In order to improve the surface properties of metal knives, agricultural appliances, and other metal parts, Ni60-WC composites were fabricated by using laser cladding (LCG) technique. The impacts of WC addition on the surface and cross-sectional morphologies, Vickers hardness, phase structure, corrosion resistance, and wear resistance of the composites were investigated. The findings suggested that WC particles had a significant impact on the structural characteristics of the Ni60-WC composites. Cross sections of Ni60-WC10 and Ni60-WC20 composites revealed the presence of numerous elements, including Ni, W, C, Fe, and Cr, confirming that the LCG approach could effectively fabricate Ni60-WC composites. Furthermore, numerous nickel grains and WC particles emerged in Ni60-WC20 composites, and the average nickel grain and WC particle diameters were reported as 96.3 and 54.6 μm, respectively. The Ni60-WC20 composite showed an average Vickers hardness of 826.9 HV, which was around 3.5 times higher than the Vickers hardness of the substrate. Similarly, the Ni60-WC20 composite demonstrated excellent anti-wear resistance. Additionally, the Ni60-WC20 composite demonstrated remarkable corrosion resistance, as reflected by its corrosion potential measurement of only − 0.37 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. L.M. Yao, Z.M. Xiao, A. Ramesh, and Y.M. Zhang, On the Melt Pool Flow and Interlayer Interface Shape in 3D Printing of Dissimilar Alloys, Int. Commun. Heat Mass Transfer, 2023, 145, p 106833.

    Article  CAS  Google Scholar 

  2. C. Zhao, F. Tian, H.R. Peng, and J.Y. Hou, Non-transferred Arc Plasma Cladding of Stellite Ni60 Alloy on Steel, Surf. Coat. Technol., 2002, 155(1), p 80–84.

    Article  CAS  Google Scholar 

  3. L. Chen, Y. Zhao, X. Chen, T. Yu, and P. Xu, Repair of Spline Shaft by Laser-cladding Coarse TiC Reinforced Ni-based Coating: Process, Microstructure and Properties, Ceram. Int., 2021, 47, p 30113–30128.

    Article  CAS  Google Scholar 

  4. Y.N. Ma, C.G. Bao, S.C. Song, and J. Lei, Effects of TiC Addition on Microstructures, Mechanical Properties and Fracture Behaviors of Porous Titanium Carbide Ceramics, Ceram. Int., 2018, 44(16), p 19919–19925.

    Article  CAS  Google Scholar 

  5. P. Farahmand and R. Kovacevic, Corrosion and Wear Behavior of Laser Cladded Ni-WC Coatings, Surf. Coat. Technol., 2015, 276, p 121–135.

    Article  CAS  Google Scholar 

  6. C. Pan, M. Gong, S. Feng, X. Chen, and P. He, Corrosion and Thermal Fatigue Behaviors of Induction-clad Ni-coated TiC Particle-reinforced Ni60 Coating in Molten Aluminum Alloy, Surf. Coat. Technol., 2021, 419(9), p 127278.

    Article  CAS  Google Scholar 

  7. J. Lei, C. Shi, S. Zhou, Z. Gu, and L. Zhang, Enhanced Corrosion and Wear Resistance Properties of Carbon Fiber Reinforced Ni-based Composite Coating by Laser Cladding, Surf. Coat. Technol., 2018, 334, p 274–285.

    Article  CAS  Google Scholar 

  8. C. Shi, J. Lei, S. Zhou, X. Dai, and L. Zhang, Microstructure and Mechanical Properties of Carbon Fibers Strengthened Ni-based Coatings by Laser Cladding: The Effect of Carbon Fiber Contents, J. Alloy. Compd., 2018, 744, p 146–155.

    Article  CAS  Google Scholar 

  9. J. Huang, Z. Zhu, W. Shi, Y. Zhao, T. Jiao, and K. Li, Microstructure and Properties Analysis of Ni60-based/WC Composite Coatings Prepared by Laser Cladding, Heliyon, 2024, 10(2), p 24494.

    Article  Google Scholar 

  10. Q. Ma, Y. Li, J. Wang, and K. Liu, Investigation on Cored-eutectic Structure in Ni60/WC Composite Coatings Fabricated by Wide-band Laser Cladding, J. Alloy. Compd., 2015, 645, p 151–157.

    Article  CAS  Google Scholar 

  11. Q. Wang, Q. Li, L. Zhang, and D. Chen, Microstructure and Properties of Ni-WC Gradient Composite Coating Prepared by Laser Cladding, Ceram. Int., 2022, 48(6), p 7905–7917.

    Article  CAS  Google Scholar 

  12. Q. Ma, Y. Li, J. Wang, and K. Liu, Microstructure Evolution and Growth Control of Ceramic Particles in Wide-band Laser Clad Ni60/WC Composite Coatings, Mater. Des., 2016, 92, p 897–905.

    Article  CAS  Google Scholar 

  13. X. Wang, F. Zhou, X. Dai, J. Lei, J. Guo, Z. Gu, and T. Wang, Evaluation and Mechanisms on Heat Damage of WC Particles in Ni60/WC Composite Coatings by Laser Induction Hybrid Cladding, Int. J. Refract Metal Hard Mater., 2017, 64, p 234–241.

    Article  CAS  Google Scholar 

  14. T. Hatakeyama, K. Sawada, K. Sekido, T. Hara, and K. Kimura, Microstructural Factors of the Complex Creep Rate Change in 18Cr-9Ni-3Cu-Nb-N Steel, Mater. Sci. Eng. A Struct. Mater. Prop. Misrostruct. Process., 2022, 831, p 831.

    Google Scholar 

  15. A. Inayat, Current Progress of Process Integration for Waste Heat Recovery in Steel and Iron Industries, Fuel, 2023, 338, p 127237.

    Article  CAS  Google Scholar 

  16. R.L.D. Paiva, R.D.S. Ruzzi, and R.B.D. Silva, Contribution to the Selection of Cutting Fluid Type and Its Application Technique for Grinding of Bearing Steel, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2022, 236(5), p 603–613.

    Article  Google Scholar 

  17. A.V. Pham, T.H. Fang, V.T. Nguyen, and T.H. Chen, Mechanical Characteristics of Ni50Co50/Ni Substrate During Indentation by Molecular Dynamics, Modell. Simul. Mater. Sci. Eng., 2022, 30(4), p 045006.

    Article  Google Scholar 

  18. C.L. Chen, A.X. Feng, Y.C. Wei, Y. Wang, X.M. Pan, and X.Y. Song, Effects of WC Particles on Microstructure and Wear Behavior of Laser Cladding Ni60 Composite Coatings, Opt. Laser Technol., 2023, 163, p 109425.

    Article  CAS  Google Scholar 

  19. F. Zhang, Y. Qin, T. Hu, A. Clare, Y. Li, and L. Zhang, Microstructures and Mechanical Behavior of Beta-type Ti-25V-15Cr-0.2 Si Titanium Alloy Coating by Laser Cladding, Mater. Sci. Eng. A, 2020, 796, p 140063.

    Article  CAS  Google Scholar 

  20. P. Wu, H.M. Du, X.L. Chen, Z.Q. Li, H.L. Bai, and E.Y. Jiang, Influence of WC Particle Behaviour on the Wear Resistance Properties of Ni-WC Composite Coatings, Wear, 2004, 257, p 142–147.

    Article  CAS  Google Scholar 

  21. W. Li, X. Yang, S. Wang, D. Duan, F. Li, Y. Qiao, Y. Liu, and X. Liu, The Effect of WC Content on the Bonding Strength and Mechanical Properties of WC/Ni60 Coatings of Brake Disc, Opt. Laser Technol., 2022, 149, p 107822.

    Article  CAS  Google Scholar 

  22. J. Ma, M. Qin, Z. Lin, R. Zhang, and X. Qu, Microstructure and Magnetic Properties of Fe-50%Ni Alloy Fabricated by Powder Injection Molding, J. Magn. Magn. Mater., 2013, 329, p 24–29.

    Article  CAS  Google Scholar 

  23. N.A. Harbi, K.Y. Benyounis, L. Looney, and J. Stokes, Laser Surface Modification of Ceramic Coating Materials, Encycl. Smart Mater., 2018, 1, p 445–461.

    Article  Google Scholar 

  24. X. Zhang, X. Di, W. Jing, X. Zhou, C. Zhang, and C. Li, Effect of Microstructural Evolution on the Mechanical Properties of Intercritical Heat-affected Zone of Quenched-and-Tempered Ultrahigh-Strength Steel, Steel Res. Int., 2022, 8, p 93.

    Google Scholar 

  25. S. Zhao, S. Zhou, M. Xie, X. Dai, D. Chen, and L. Zhang, Phase Separation and Enhanced Wear Resistance of Cu88Fe12 Immiscible Coating Prepared by Laser Cladding, J. Market. Res., 2019, 8(2), p 2001–2010.

    CAS  Google Scholar 

  26. Y. Liu, M. Tang, Q. Hu, Y. Zhang, and L. Zhang, Densification Behavior, Microstructural Evolution, and Mechanical Properties of TiC/AISI420 Stainless Steel Composites Fabricated by Selective Laser Melting, Mater. Des., 2020, 187, p 108381.

    Article  CAS  Google Scholar 

  27. Q.H. Li, Y.L. Li, Q.F. Bai, C. Chen, C.J. Zhao, and Y.L. Liu, Effect of Power Spinning Combined with Heat Treatment on the Organization and Wear Resistance of High-speed Laser Cladding Coatings, Mater. Lett., 2023, 333(2), p 133594.1-133594.4.

    Google Scholar 

  28. W. Li and D. Kong, Effect of Y2O3 Addition on Microstructure and Friction-wear Performances of Laser Cladded CrNi Coatings on AISI H13 Steel, Ind. Lubr. Tribol., 2022, 2, p 74.

    Google Scholar 

  29. C. Cui, M. Wu, X. Miao, Z. Zhao, and Y. Gong, Microstructure and Corrosion Behavior of CeO2/FeCoNiCrMo High-entropy Alloy Coating Prepared by Laser Cladding, J. Alloys Compd. Interdiscip. J. Mater. Sci. Solid-state Chem. Phys., 2022, 890, p 161826–161838.

    CAS  Google Scholar 

  30. Y. Liu, X.H. Gu, C.H. Lou, L. Kang, Q.H. Hou, and C.Y. Ma, Influence of WC Ceramic Particles on Structures and Properties of Laser Cladding Ni50-WC Coatings, J. Market. Res.arket. Res., 2023, 26, p 14–21.

    Google Scholar 

  31. S.F. Zhou and X.Q. Dai, Dissolution Behavior of Cast WC Particles in NiCrBSi-WC Coatings by Laser Induction Hybrid Cladding, Adv. Mater. Res., 2013, 668, p 283–287.

    Article  Google Scholar 

  32. Q.B. Nguyen, Z. Zhu, B.W. Chua, W. Zhou, J. Wei, and S.M.L. Nai, Development of WC-inconel Composites Using Selective Laser Melting, Arch. Civil Mech. Eng., 2018, 18, p 1410–1420.

    Article  Google Scholar 

  33. F.Q. Li, X.Y. Feng, and Y.B. Chen, Influence of WC Content on Microstructure of WC/Ni60A Laser Cladding Layer, Chin. J. Lasers, 2016, 43(4), p 117–123.

    Google Scholar 

  34. L.M. Yao, Z.M. Xiao, S. Huang, and U. Ramamurty, The Formation Mechanism of Metal-ceramic Interlayer Interface During Laser Powder Bed Fusion, Virtual Phys. Prototyp., 2023, 18(1), p 2235324.

    Article  Google Scholar 

  35. B. AlMangour, D. Grzesiak, and J. Yang, Nanocrystalline TiC-reinforced H13 Steel Matrix Nanocomposites Fabricated by Selective Laser Melting, Mater. Des., 2016, 96, p 150–161.

    Article  CAS  Google Scholar 

  36. B. AlMangour, D. Grzesiak, J. Cheng, and Y. Ertas, Thermal Behavior of the Molten Pool, Microstructural Evolution, and Tribological Performance During Selective Laser Melting of TiC/316L Stainless Steel Nanocomposites: Experimental and Simulation Methods, J. Mater. Process. Technol., 2018, 257, p 288–301.

    Article  CAS  Google Scholar 

  37. F. Deirmina, B. AlMangour, D. Grzesiak, and M. Pellizzari, H13–Partially Stabilized Zirconia Nanocomposites Fabricated by High-energy Mechanical Milling and Selective Laser Melting, Mater. Des., 2018, 146, p 286–297.

    Article  CAS  Google Scholar 

  38. J.Z. Lu, J. Cao, H.F. Lu, L.Y. Zhang, and K.Y. Luo, Wear Properties and Microstructural Analyses of Fe-based Coatings with Various WC Contents on H13 Die Steel by Laser Cladding, Surf. Coat. Technol., 2019, 369, p 228–237.

    Article  CAS  Google Scholar 

  39. G. Xie, X. Lin, K. Wang, X. Mo, D. Zhang, and P. Lin, Corrosion Characteristics of Plasma-sprayed Ni-coated WC Coatings Comparison with Different Post-treatment, Corros. Sci., 2007, 49(2), p 662–671.

    Article  CAS  Google Scholar 

  40. Y. Cui, L. Chen, P. Qin, R. Li, Q. Zang, J. Peng, L. Zhang, S. Lu, L. Wang, and L. Zhang, Metastable Pitting Corrosion Behavior of Laser Powder Bed Fusion Produced Ti-6Al-4V in Hank’s Solution, Corros. Sci., 2022, 203, p 110333.

    Article  CAS  Google Scholar 

  41. P. Qin, Y. Chen, Y. Liu, J. Zhang, L. Chen, Y. Li, X. Zhang, C. Cao, H. Sun, and L. Zhang, Resemblance in Corrosion Behavior of Selective Laser Melted and Traditional Monolithic β Ti-24Nb-4Zr-8Sn Alloy, ACS Biomater. Sci. Eng., 2019, 5(2), p 1141–1149.

    Article  CAS  PubMed  Google Scholar 

  42. S. Afroukhteh, C. Dehghanian, and M. Emamy, Preparation of the Ni-P Composite Coating Co-deposited by Nano TiC Particles and Evaluation of It’s Corrosion Property, Appl. Surf. Sci., 2012, 258(7), p 2597–2601.

    Article  CAS  Google Scholar 

  43. D. Zhang and X. Zhang, Laser Cladding of Stainless Steel with Ni-Cr3C2 and Ni-WC for Improving Erosive-corrosive Wear Performance, Surf. Coat. Technol., 2005, 190(2–3), p 212–217.

    Article  CAS  Google Scholar 

  44. F. Xia, C. Li, C. Ma, Q. Li, and H. Xing, Effect of Pulse Current Density on Microstructure and Wear Property of Ni-TiN Nanocoatings Deposited via Pulse Electrodeposition, Appl. Surf. Sci., 2021, 538, p 148139.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research is supported by National Natural Science Foundation of China (Granted No. 51974089), International Scientific and Technological Cooperation Project (Granted No. GUIQ0700500523) and the Guilin City Science Research and Technology Development Plan Project (Granted No. 20220124-23).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunyang Ma or Fafeng Xia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, C., Li, H., Xia, F. et al. Preparation and Characterization of Ni60-WC Composites Fabricated Using Laser Cladding Technique. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09446-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09446-y

Keywords

Navigation